
Skyline Groups Are Ideals. An Efficient
Algorithm for Enumerating Skyline

Groups

Simon Coumes1, Tassadit Bouadi2(B), Lhouari Nourine3,
and Alexandre Termier2

1 ENS Rennes, 35170 Bruz, France
simon.coumes@ens-rennes.fr

2 Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
{tassadit.bouadi,alexandre.termier}@irisa.fr

3 Univ Clermont Auvergne, 63000 Clermont-Ferrand, France
lhouari.nourine@uca.fr

Abstract. Skyline queries are multicriteria queries that are of great
interest for decision applications. Skyline Groups extend the idea of sky-
line to groups of objects. In the recent years, several algorithms have
been proposed to extract, in an efficient way, the complete set of skyline
groups. Due to the novelty of the skyline group concept, these algorithms
use custom enumeration strategies. The first contribution of this paper is
the observation that a skyline group corresponds to the notion of ideal of
a partially ordered set. From this observation, our second contribution
consists in proposing a novel and efficient algorithm for the enumera-
tion of all ideals of a given size k (i.e. all skyline groups of size k) of a
poset. This algorithm, called GenIdeals, has a time delay complexity of
O(w2), where w is the width of the poset, which improves the best known
time output complexity for this problem: O(n3) where n is the number
of elements in the poset. This work present new theoretical results and
applications on skyline queries.

Keywords: Skyline queries · Ideal enumeration · Time delay
complexity

1 Introduction

In decision making, one often wants to optimize simultaneously several charac-
teristics. For example, consider a soccer coach who wants to recruit, into her
team, a player who has both a low miss rate (corresponding to a high accuracy)
and doesn’t take long to cross the field. These characteristics (i.e. dimensions)
are often multiple and conflicting: there is rarely a single solution optimizing
all the characteristics at the same time. Skyline queries [3] solve this problem
by considering the “best compromises” between the different dimensions. More
formally, in a multidimensional space where the dimension domains are ordered
c© Springer Nature Switzerland AG 2021
P. Flocchini and L. Moura (Eds.): IWOCA 2021, LNCS 12757, pp. 223–236, 2021.
https://doi.org/10.1007/978-3-030-79987-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79987-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-79987-8_16


224 S. Coumes et al.

(totally or partially), skyline queries return the objects that are not dominated
by any other object. An object dominates another object, if it is as good or bet-
ter in all dimensions and strictly better in at least one dimension. This notion
of dominance is also called Pareto dominance.

In the soccer example, results of skyline queries may be: (i) the best goal-
scorer (whatever her running speed), (ii) the best runner (whatever her miss
rate), or (iii) a player being average on both criteria, with no other player both
missing less and taking less time to cross the field.

An interesting and challenging problem arises when, in some applications,
users are interested in capturing skyline groups instead of points. This is for
example the case when looking for the best soccer team and not the best soccer
player. The Pareto dominance concept of one object over another is not directly
applicable to the notion of groups of objects. For example, it is obvious that
the best soccer team may not correspond to the group of the best individual
players, nor necessarily to the group of the most average players. Recent works [6,
8,15,18] have considered the issue of skyline group computation by extending
the dominance relation between points to groups of points: this is the group
dominance relation, also called g-dominance, which allows comparison between
groups of the same size. The g-dominance relation allows comparison between
groups of the same size, and is defined by [8] as: “Given two different groups G
and G′ with k points, we say that G g-dominates G′, if we can find a permutation
of the k points for G and G′, such that either pi dominates p′

i or pi=p′
i for all 1

≤ i ≤ k, and for at least one i, pi dominates p′
i”.

Enumerating skyline groups defined by such group dominance relation is
challenging given the huge size of the search space considered: in a set of n
points, there are

(
n
k

)
possible group skylines of size k. This prompted the need

to design efficient enumeration algorithms dedicated to the discovery of group
skylines. In the papers proposing g-dominance [8,9], the authors proposed to
exploit a novel structure based on skyline layers (i.e. models the dominance links
between the points), and two efficient search strategies to enumerate the skyline
groups. Other works studied the g-dominance relation and proposed algorithmic
improvements [7,15,17,19]. The state of the art approach is G-MDS [15], which
is based on a structure called minimum dominance graph (MDG), a directed
acyclic graph representing the dominance relation among relevant points.

In this work, our objective is to get a finer understanding of the space of
skyline groups as defined by the g-dominance relation, in order to propose an
algorithm exploring only the space of solutions. By going back to enumeration
theory concepts, we could show that the skyline group notion corresponds to
the well known concept of ideal. This allows us to propose an elegant and effi-
cient algorithm to compute skyline groups, that does not visit any unnecessary
group. Furthermore, the algorithm that we propose to enumerate ideals of size
k improves the state of the art for ideal enumeration, having a time delay com-
plexity of O(w2) (with w the posets’ width), where the best know time output
complexity for this problem is O(n3) per ideal [16] (with n the number of ele-
ments in the poset).
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We first recall that an ideal (or downset) of a poset is a subset that is closed by
the order relation ≤, i.e. an ideal containing an element x, contains all elements
inferior or equal to x. The notion of ideals of partially ordered sets has been found
many times in several applications as (scheduling [13], verification of distributed
systems [2]). Listing or enumerating all ideals of a poset simply means outputing
them one after the other. Many algorithms have been proposed in the literature
[1,4,10,12,13]. But all these algorithms cannot be used for our purposes, since
they list all ideals. In addition their adaptation does not allow to have a good
complexity.

In this work, we show that given the classical dominance relation for points
of the data, group skylines of size k correspond exactly to ideals of size k for this
relation (Proposition 1). We are then interested in the enumeration of ideals of a
given size k. To the best of our knowledge the only works for enumerating ideals
of a given size have been considered in [5] for particular cases of posets, and
Wild’s algorithm in [16] for the general case. We identify a directed graph whose
vertices are ideals of size k and such that there is an edge between two ideals if
there is a small transformation to obtain one from the others. We then propose
an efficient algorithm to enumerate all ideals of a given size k using polynomial
space.

The rest of the paper is organized as follows. Section 2 introduces the basic
concepts related to skyline queries and the concept of skyline group. We present
and detail, in Sect. 3, the established correspondence between key concepts from
the field of skyline queries and the field of partial order theory. In Sect. 4, we
develop the formal aspects, highlight new and useful properties, and present a
way to organize the space of ideals (i.e. skyline groups) as a Depth First Search
(DFS) tree. Our algorithm GenIdeals for enumerating k-ideals based on this
tree-shaped structuration of the space is then discussed in Sect. 5. In this same
section, we present the detailed complexity analysis of GenIdeals, showing its
O(w2) complexity for k-ideals enumeration. Section 6 concludes the paper.

2 Preliminaries

In this section, we introduce the concept of skylines and extend it to the concept
of group skylines. We then review a few useful results from the literature.

The various definitions are illustrated using the example of Table 1 which
describes proposals for hotels according to the dimensions Price, Distance from
the beach, and Distance from transportation. Without any loss of generality, we
assume that it is always better if the values of the attributes are low.

Definition 1 (Pointset). A pointset is a set of same size tuples of real num-
bers. We usually write the pointset using the letter D and assume said numbers
to be positives. The elements of the pointset are called points, the elements of
the points are its attributes.

Example 1. In Table 1, D = {(10, 1, 4), (10, 2, 4), (10, 4, 1), (20, 1, 4), (40, 1, 1),
(40, 5, 1), (50, 4, 1)} is a pointset defined in a 3-dimensional space F = (Price,
Distance, Transportation). The domain of each attribute is totally ordered.
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Table 1. A set of hotels

Hotel ID Price Distance Transportation

a 10 1 4

b 10 4 4

c 10 1 5

d 20 2 1

e 40 1 2

f 40 3 2

g 50 2 3

Definition 2 (Point domination). A point p dominates a different point p′,
denoted by p ≺ p′, if p is lower or equal to p′ on any attribute and p is strictly
lower than p′ on at least one attribute. We write p � p′ to say “either p dominates
p′ or p = p′”.

Example 2. In Table 1, we have (20, 2, 1) � (50, 2, 3), since the price value 20
is lower than 50 and the other attribute values are equal. We also note that
(10, 1, 4) � (20, 2, 1), since the transportation value 4 is higher than 1.

Definition 3 (Skyline). The Skyline of a pointset D is the set of all points in
D that are not dominated by any other point.

2.1 Skyline Groups

In the hotel example (Table 1), one may consider the case of a travel agency,
that wants to pre-book exactly k rooms (supposed in k different hotels for sake
of simplicity). Each room has the same price and distances characteristics as
before: among the many rooms available (k << |D|), the travel agency wants to
identify the best groups, able to satisfy the needs of many potential customers.

The definition of Group domination and skyline group used in this paper was
first introduced in [8]. It is the notion that, in our opinion, is the best adaptation
of the idea of skylines to groups of points.

Definition 4 (Group domination). A group (set) G containing k points dom-
inates another group G′ of size k, denoted by G ≺g G′, if and only if there is a
bijection f from G to G′ such that: ∀p ∈ G, p � f(p) ∧ ∃p ∈ G s.t. p ≺ f(p).

Example 3. For the pointset in Table 1, we have {a, e, g} ≺g {b, f, g}, because
a ≺ b, e ≺ f , and g � g.

Definition 5 (Skyline group). We say that a group G of size k is a skyline
group if and only if it is dominated by no other group.

Example 4. In Table 1, {a, c, e} is a skyline group of size 3. Since the three points
are skyline points, it is easy to verify that this group cannot be dominated by
any other group of size 3.
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Definition 6 (g-skyline). The g-skyline of size k of a pointset D, denoted Sk,
is the set of all groups of k elements of D that are not dominated by any other
group, i.e. the set of all the skyline groups of size k of D.

Example 5. In Table 1, S4 = {{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {a, c,
e, g}, {a, c, e, f}, {c, e, f, g}}

We also recall two useful notations for discussing partially ordered sets (i.e.
posets) which we will need later. Those are the notions of ideal and that of the
width of a poset.

Definition 7 (Ideal). Given (E,≤) a partially ordered set, a subset I of E is
an ideal if and only if: ∀(x, y) ∈ E × I, if x ≤ y, then x ∈ I.
In other words, I is closed by the order relation ≤.

Definition 8 (Poset width). Given (E,≤) a poset, the width of that poset is
the size of the maximal subset I of E such that: ∀(x, y) ∈ I2, x 	< y. I is called
a maximal antichain of (E,≤).

3 Skyline Groups Are Ideals

In this section, we present our first contribution: a new correspondence between
concepts from the field of skyline queries and concepts from the field of partial
order theory. Namely, we see that a skyline group is an ideal. This correspondence
is in our eyes the most important in this paper. In [15], the authors introduced
the concept of Unit group as follow:

Definition 9 (Unit group). The unit group of point p is the set of all points
that dominate it plus p. It is written u(p). Formally : u(p) = {p′ ∈ D | p′ � p}.

The concept of unit group is equivalent to the concept of principal ideal in a
partially ordered set (poset). For example, in Table 1, u(b) = {a, b}.

Proposition 1. Consider a group G of size k. The following properties are
equivalent: (1) G is a skyline group, (2) ∪p∈G u(p) = G, (3) ∀p ∈ G, u(p) ⊆ G,
(4) and G is an Ideal of (D,�).

Because of the third property of Proposition 1, we know that a point with
a unit group of size strictly superior to k cannot belong to a skyline group.
Because domination is transitive, unit group size increases with domination (i.e.,
p � p′ =⇒ u(p) ⊆ u(p′)). Therefore, when searching for skyline groups, all
points with an unit group of size strictly superior to k can be entirely removed
without affecting in any way the information at hand on the other points.

The fourth property has important implications: it means that any algorithm
suitable for the enumeration of ideals of size k of a poset is also suitable to be
used for the enumeration of skyline groups of size k of a pointset, using � as an
order relation.
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In the rest of the paper, we draw on Proposition 1 and consider skyline groups
on a given pointset D to be defined as the ideals of the poset (D,�). Thus, our
problem becomes the enumeration of all ideals of a given size k of a poset.

We consider the particular case of skyline queries for our explanations and
will make references to the canonical lexicographic order on points. However,
all that follows is compatible with any poset with a topological order. Because
calculating a topological order for a poset can be done in O(n2) with n the size of
the poset, everything bellow this point and especially the algorithm we present
can be adapted to list the ideals of size k of any given poset.

In the next section we will describe new properties to explore the graph of
skyline groups. These properties allowed us to propose a simple and efficient
k-ideal (i.e. skyline groups of size k) enumeration algorithm.

4 The Tree of Skyline Groups

Given a pointset D of dimension d and an integer k, we want to enumerate the
elements of the set Sk of its skyline groups of size k, i.e. its g-skyline of parameter
k. We identify a rooted covering tree T = (Sk,P) which leads us to an efficient
algorithm to search this tree in polynomial time and space. But first, we must
introduce a few notions. We begin by some order relations on points and groups.

We define the usual lexicographical order relation ≤ on points of D as follows:

Definition 10. p = (x1, x2, ..., xd) ≤ q = (y1, y2, ..., yd) if and only if p = q or
there is i ∈ {1, 2, ..., d} such that for all 1 ≤ j < i, xj = yj and xi < yi.

It has the following interesting property.

Property 1. ≤ is a topological ordering for the dominance relation.

Because the notion of skyline group only depends on the dominance relation
between points and not on their coordinates, we can rename points according to
the lexicographic order and only remember which points dominate which ones.

Example 6. In Table 1, we have the following points order (according to ≤):
p1 = (10, 1, 4), p2 = (10, 4, 4), p3 = (10, 1, 5), p4 = (20, 2, 1), p5 = (40, 1, 2),
p6 = (40, 3, 2), p7 = (50, 2, 3)

Fig. 1 shows the point domination relation between the points defined above.
Such graphical representation helps to quickly identify skyline groups. Then, we
can easily notice that (p1, p2, p3, p6) is not a skyline group because p4 is not in
it and p4 � p6. Also, (p1, p2, p3, p4) is a skyline group since no point could be
replaced by another that dominates it.

Since all elements of Sk have the same size, a group G ∈ Sk is represented
by a tuple (p1, p2, ..., pk) such that p1 ≤ p2 ≤ ... ≤ pk. In the same way as for D,
we define a lexicographical ordering � on the set Sk.
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Fig. 1. Domination graph between points of Table 1

Example 7. In Table 1, we have the following skyline groups of size 4
(ordered according to ≤): G0 = (p1, p2, p3, p4), G1 = (p1, p2, p3, p5), G2 =
(p1, p2, p4, p5), G3 = (p1, p3, p4, p5), G4 = (p1, p4, p5, p6), G5 = (p1, p4, p5, p7),
G6 = (p4, p5, p6, p7)

In the following examples, we fix the size of skyline groups to 4.
We denote by G0 the smallest group according to the lexicographical ordering

�. We then define the parent relation.

Definition 11 (Parent). Let G be a group in Sk with G 	= G0. The parent of
G, denoted by Parent(G), is obtained from G by deleting the largest element b
in G (w.r.t ≤) and adding the smallest element a ∈ D\G.

Proposition 2. The parent of a skyline group is a skyline group of the same
size.

We say that G′ is a child of G if Parent(G′) = G, and denote by Children(G)
the set of all the children of G. Let T = (Sk, Parent) be the directed graph whose
vertices are elements of Sk and edges correspond to the parent relation.

Proposition 3. The directed graph T = (Sk, Parent) is a tree rooted at G0

Proof. Let G 	= G0 be a group in Sk. We show that there is a unique path
G0 ≤ G1 ≤ G2 ≤ ... ≤ Gm = G such that Parent(Gi) = Gi−1 for 0 < i ≤ m.
Let G′ = Parent(G) with G′ = (G\{b})∪{a}. Since G 	= G0, the smallest point
not in G is smaller than the highest point in G. Hence, a < b and G′ < G. So for
every group different from G0, its parent is smaller for ≤ than it. By repetitive
application of the relation parent we inevitably reach G0 since Sk is finite. 
�

Our algorithm will simply run a tree exploration. However, we need to be
able to enumerate the children of a given group.

We assume that the points in D are numbered according to the lexicographic
order ≤. We have p1 ≤ p2 ≤ ... ≤ pn such that G0 = {p1, p2, ..., pk}.

Definition 12 (Starting prefix). Let G be a group in Sk. The starting prefix
of G, denoted by SPrefix(G) is the longest common prefix of G with G0.

Example 8. Starting prefixes are shown below in Fig. 2 in bold.
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In the following we show that the children of a given group G are exactly
the groups that can be obtained by removing one point of its starting prefix and
adding another point greater than any point of G such that the new group is an
ideal.

Proposition 4. Let G1 and G2 be two skyline groups. G2 is a child of G1 iff
G2 is obtained by removing one element of the starting prefix of G1 from G1 and
adding another element higher than any element of G1.

Proof. Let G1 and G2 be two groups in Sk.
Suppose that G2 = (G1\{a}) ∪ {b} where a is a point of the starting prefix
of G1 and b /∈ G1 is greater than every elements of G1. We show that G1 =
Parent(G2). Clearly b is the largest element in G2. Moreover by definition of
the starting prefix, a is the smallest point (for ≤) that is not in G1\{a} = G2\{b}.
Hence a is the smallest element that can be added to G2\{b}, and thus G1 =
Parent(G2). Now, suppose that G2 is child of G1, i.e. G1 = Parent(G2). By
definition of the relation Parent, G1 is obtained from G2 by deleting the largest≤
element b in G2 and adding the smallest≤ element a not in G2. We show that a
belongs to the starting prefix of G1. For contradiction, suppose there is a′ not
in G1, a′ < a and a′ belongs to G0. Then a′ /∈ G2\{b} and b 	≤ a′. Thus a′ can
be added to G2\{b} which contradict that a is the smallest element that can be
added. 
�

Moreover the depth of a group G in the tree T = (Sk, Parent) is equal to
the size of | G0\G |. So the depth of a leaf in the tree is bounded by k. Figure 2
shows the tree T for our example set of points.

Fig. 2. Example tree of skyline groups
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5 Algorithm

5.1 First Look at Our Algorithm

Our algorithm will be a DFS (Depth First Search) on the tree T . First we show
how to generate all the children of a given group G. Recall that a child is obtained
by exchanging two elements (deleting one and adding another one).

Let p1, p2, ..., pn be a topological order of (D,≤) and G a group in Sk. We
use max(G) to denote the largest point in G w.r.t ≤. We denote by Pred(p) the
points that dominate a given point p and by Succ(p) the points it dominates.

Let SPrefix(G) be the set of elements in the starting prefix in G and
SPrefixToDel(G) the set of points in SPrefix(G) that are maximal w.r.t.
≤ in G, i.e all points a ∈ G such that G\{a} is still a skyline group (of size
k − 1). No other elements of G can be removed to create a child of G.

We also consider the set of all potential candidates that could be added to
G after deleting one element from SPrefixToDel(G). Let CandToAdd(G) be
the set of points greater than max(G) that are minimal in D\G w.r.t �. The
set of candidates when deleting an element a ∈ SPrefixToDel(G) from G is
obtained from CandToAdd(G) by removing from it the successors of a in D, i.e.
CandToAdd(G, a) = CandToAdd(G)\Succ(a).

Theorem 1. Let G be a group in Sk. Then Children(G) = {(G\{a}) ∪ {b} |
a ∈ SPrefixToDel(G), b ∈ CandToAdd(G, a)}.

Proof. Let G be a group in Sk and let G′ ∈ {(G\{a}) ∪ {b} | a ∈ SPrefix
ToDel(G), b ∈ CandToAdd(G, a)}. We show that Parent(G′) = G. We fix G′ =
(G\{a}) ∪ {b} with a ∈ SPrefixToDel(G) and b ∈ CandToAdd(G, a). Since a
belongs to the starting prefix of G then for all a′ ≤ a we have a′ in G. Thus a
is the smallest point not in G′. Furthermore, by definition of CandToAdd(G, a)
we have b ≥ max(G) which implies that b is the largest point in G′. Hence G is
the parent of G′. Conversely let G and G′ be two groups (G′ 	= G0) such that
G = Parent(G′), we show that G′ ∈ {(G\{a})∪{b} | a ∈ SPrefixToDel(G), b ∈
CandToAdd(G, a)}. Again, we fix G = (G′\{b})∪{a} with b the largest point in
G′ and a the smallest one not in G′. We show that a ∈ SPrefixToDel(G). a is
the smallest point not in G′ and therefore a belongs to the starting prefix of G.
Since G∩G′ is also an ideal, we conclude that a is maximal in G for � and thus
a ∈ SPrefixToDel(G). Since b is maximal in G′ it is higher than any point in
G. Because b 	∈ G and because it can be added to G, we have b ∈ min(D\G).
Hence b ∈ CandToAdd(G). Moreover because b can be added to G\{a}, we know
a 	� b (i.e. b /∈ Succ(a)) and thus b ∈ CandToAdd(G, a). 
�

Remark 1. It is worth noticing that if G′ ∈ Children(G) with G′ = (G\{a}) ∪
{b}, then a cannot be added and b cannot be deleted from any group in the
subtree rooted at G′. In other words, in any path of the execution tree, any
point can be deleted or added at most once. This is because all deleted elements
belong to the starting prefix (i.e. elements ranging from p1 to pk), and all added
ones are greater than pk in the topological ordering ≤.
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We now describe an algorithm called GenIdeals (Algorithm 2) that takes
the starting prefix of a group G in Sk, the lists SPrefixToDel(G) and
CandToAdd(G) and outputs all groups in the subtree of T rooted at G.
The first call is GenIdeals(SPrefix(G0), SPrefixToDel(G0), CandToAdd
(G0) , G0) which lists all groups in Sk.

5.2 Detailed Explanation of GenIdeals: Data structures and
algorithms

The GenIdeals algorithm uses the following global data structures:

– Succ[1..n] an array where Succ[i] is a list of successors of pi in (D,≤).
– Pred[1..n] an array where Pred[i] is a list of predecessors of pi in (D,≤).
– T look[1..n] an array where T look[i] = 1 if the point pi is present and
T look[i] = 0 otherwise.

– PredCount[1..n] an array where PredCount[i] is the number of predecessors
of pi not in the current group G. This allows us to check in O(1) if a point
pi is ready to be added, i.e. minimal in (D\G).

– SuccCount[1..n] an array where SuccCount[i] is the number of successors of
pi in the current group. This counter let us check in O(1) if a point pi is
maximal in the current group.

Remark 2. The sizes of Succ[i], Pred[i], SPrefixToDel(G), CandToAdd(G) and
Children(G) are bounded in w the width of (D,≤).

The algorithm GenIdeals Main is split into two phases. We first call the
initialization process to compute G0 and then lists SPrefixToDel(G0) and
CandToAdd(G0). Then we start the recursive process GenIdeals that corre-
sponds to the core of the algorithm.

We describe the function Initialisation (Algorithm 1) briefly here. The first
for loop initializes the arrays T look and PredCount[1..n] and adds those points
that are minimal in (D,≤) and greater than pk to the list Min. This loop can
be achieved in O(n + m) time complexity where n is the number of points and
m the size of the lists Pred.

The second for loop computes G0 and updates the counter PredCount and
the list Min. At the end of this loop, Min contains the minimal points in D\G0

and SuccCount[i] the number of successor points of Pi in G0. The time spent
by this loop is bounded by O(kw).

The third for loop computes the maximal points in G0 in O(k). Thus the
total complexity of the algorithm initialization is bounded by O(n + m + kw)
which is less than O(n2). Please mind that initialization isn’t purely described by
its output, it also initializes global variables in the form of the arrays PredCount
and SuccCount.

We now describe in details the recursive algorithm GenIdeals (Algorithm
2). It takes a group G in Sk, the lists SPrefixToDel(G) and CandToAdd(G)
and outputs all groups in the subtree of T rooted in G.
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Algorithm 1. Initialization
1: Min = ∅
2: for i = 1 to n do
3: T look[i] = 0
4: PredCount[i] = sizeof(Pred[i])
5: SuccCount[i] = 0
6: if PredCount[i] = 0 and i > k then
7: Add i to Min
8: { Now we initialize G0}
9: G0 = ∅

10: for i = 1 to k do
11: Add pi to G0

12: for v ∈ Succ[i] do
13: PredCount[v] = PredCount[v] − 1
14: if v ≤ k then
15: SuccCount[i] = SuccCount[i] + 1

16: if PredCount[v] = 0 and v > k then
17: Add v to Min
18: CandToAdd = Min
19: SPrefixToDel = ∅
20: for i = 1 to k do
21: if SuccCount[i] = 0 then
22: Add i to SPrefixToDel

23: return (SPrefixToDel, CandToAdd,G0)

The outer loop while considers all points in the starting prefix of G that
might be removed to create children of G. For each such a ∈ SPrefixToDel(G),
we delete a and compute the list L = CandToAdd(G, a). This is done using
the algorithm UpdateCandToAdd1 (Algorithm 3). First we insert points in
Succ(a) into T look, and for each v ∈ CandToAdd(G): we check if T look[v] = 0,
then we add a to the output, else we delete it from T look in order to keep
the array T look empty when entering and exiting the algorithm UpdateCand-
ToAdd1. The time complexity of algorithm UpdateCandToAdd1 is bounded
by O(w). Note that the list L may be empty for all a ∈ SPrefixToDel(G). So
the worst case is when G is a leaf and in this case the total cost is bounded by
O(w2).

Then, the inner loop while takes any point b in the list L, calls the function
Print and prepare the parameters for the new group G′ = (G\{a})∪{b}. For the
former step, we use two update functions UpdateCandToAdd2 (Algorithm
4) and UpdateSPrefixToDel(a, b, SPrefixtoDel) (Algorithm 5). The first
function UpdateCandToAdd2 adds the new candidates to be added when
deleting the point b. The second one computes the starting prefix of G′ and
SPrefixtoDel, i.e. maximal elements in G′ that can be deleted from G′.

The time complexity needed by the algorithms UpdateCandToAdd2 and
UpdateSPrefixToDel is bounded by O(w).



234 S. Coumes et al.

Algorithm 2. GenIdeals(SPrefixToDel, CandToAdd, G)
1: while SPrefixToDel is not empty do
2: a = Delete and return an element in SPrefixToDel
3: L = UpdateCandToAdd1(a,CandToAdd)
4: while L is not empty do
5: b = Delete and return an element in L
6: G′ = (G\{a}) ∪ {b}
7: Print (G′)
8: SprefD =UpdateSPrefixToDel(a, b, SPrefixetoDel)
9: Cand =UpdateCandToAdd2(b, L)

10: GenIdeals(SprefD,Cand,G′)
11: Cancel changes to PredCount and SuccCount done to add b

12: Cancel changes to PredCount and SuccCount done to remove a

Algorithm 3. UpdateCandToAdd1(a,CandToAdd)
1: L = ∅
2: for v ∈ Succ[a] do
3: T look[v] = 1

4: for v ∈ CandToAdd do
5: if T look[v] = 0 then
6: Add v to L
7: else
8: T look[v] = 0

9: return L

Algorithm 4. UpdateCandToAdd2(b, CandToAdd)
1: for v ∈ Succ[b] do
2: PredCount[v] = PredCount[v] − 1
3: if PredCount[v] = 0 and v > b then
4: Add v to CandToAdd
5: return CandToAdd

Algorithm 5. UpdateSPrefixToDel (a, b, SPrefixetoDel)
1: for v ∈ Pred[a] do
2: SuccCount[v] = SuccCount[v] − 1
3: if SuccCount[v] = 0 then
4: Add v to SPrefixetoDel

5: for v ∈ Pred[b] do
6: if v ≤ k then
7: SuccCount[v] = SuccCount[v] + 1
8: Delete v from SPrefixetoDel

9: return SPrefixetoDel

Finally, the main algorithm GenIdeals main is presented in Algorithm 6.
It simply consists of a call to Initialization followed by the first call to the
core function GenIdeals.
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Algorithm 6. GenIdeals main

1: (SPrefixToDel, CandToAdd,G0) =Initialization()
2: GenIdeals(SPrefixToDel, CandToAdd,G0)

Theorem 2. The algorithm GenIdeals main lists all groups of size k in O(w2)
delay and polynomial space.

Proof. The correctness of the algorithm GenIdeals main comes from
Theorem 1. The complexity of each call to GenIdeals is dominated by the run-
ning time of the algorithm UpdateCandToAdd1 which is bounded by O(w2)
as discussed before. Thus the algorithm takes O(w2) time per ideal, but the
delay between two outputs can be greater. This is the case when we output a
group in depth k and the next outputted one is in depth 1, so the delay between
them is O(kw2) since the depth is O(k). To show O(w2) delay we use the idea
in [11,14]. Indeed, the algorithm GenIdeals main is internal output, that is it
outputs an ideal at each node of the tree rather than outputing only for leaves.
So we alternatively output depending on the parity of the depth of a node. As
suggested in [14], we do the following two changes in algorithm GenIdeals:

– We change the Line 7 by: If the depth of the call is odd then output G′

– We add after line 10 the instruction: If the depth of the call is even then
output G′.

The space used by the algorithm is linear for each node of the searching tree.
Moreover the depth of the tree is bounded by k. 
�

6 Conclusion

This work is the first to show that skyline groups are objects set by partial
order theory, called ideals. This allowed us to bring out interesting properties
to ease the exploration of the graph of k-ideals (i.e. skyline groups of size k).
Indeed, we presented a novel way to organize the space of skyline groups as
a DFS tree. This helped us to propose a simple and efficient k-ideal enumera-
tion algorithm: GenIdeals main. The time delay complexity analysis that was
performed highlights the relevance of our approach and shows that it outper-
forms the current state-of-the-art algorithm. Moreover, there are two directions
to improve the result of this work. First one can improve the complexity of the
algorithm UpdateCandToAdd1 to O(1) when its output is empty. Second,
to improve the space complexity, one may find a lexicographic order on the
groups to avoid the re-enumeration in the reverse search technique, but the time
complexity may increase.
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ble ordonné. C.R. Acad. Sci. Paris Sér. I Math. 319, 1115–1120 (1994)
11. Nakano, S., Uno, T.: Constant time generation of trees with specified diameter.
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