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Abstract
We introduce Qiana, a logic framework for reasoning on formulas that are true only in specific

contexts. In Qiana, it is possible to quantify over both formulas and contexts to express, e.g., that
“everyone knows everything Alice says”. Qiana also permits paraconsistent logics within contexts,
so that contexts can contain contradictions. Furthermore, Qiana is based on first-order logic, and
is finitely axiomatizable, so that Qiana theories are compatible with pre-existing first-order logic
theorem provers. We show how Qiana can be used to represent temporality, event calculus, and
modal logic. We also discuss different design alternatives of Qiana.

1. Introduction

In his “Notes on formalizing contexts” John (McCarthy, 1987) argued for the importance of context
representation in formal logic. The core idea is that statements can be tied to specific contexts, which
act as modalities on the statements. This idea is substantiated by the predicate ist: ist(c, φ) means
that the formula φ is true in the context c. Contexts can represent different things: Something can be
true only in the context of a newspaper article, in the context of a piece of fiction, or in someone’s
beliefs. We illustrate one possible use of contexts with the final scene of the play “Romeo and
Juliet” by William Shakespeare:

Near the end of the play, Juliet wishes to meet with Romeo, but her parents won’t let her. Her
friend, Friar Laurence, offers her a potion and says it will allow her to fake her death. Juliet takes
the potion, hoping it will allow her to escape her family. However, the plan backfires: Romeo sees
Juliet before she awakens, seemingly dead, and kills himself in despair. When Juliet later wakes
up, she sees Romeo dead and kills herself.

The key elements of the ending of the play are: (1) Friar Laurence is right in what he says
(the potion will make Juliet appear dead), and (2) someone who is madly in love with someone
else will kill themselves if they believe their loved one to be dead. Thus, leaving out details and
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overgeneralizing, we want to represent:

∀ϕ. ist(says(FriarLaurence), ϕ)→ ϕ

∀x, y. madlyLoves(x, y) ∧ ist(believes(x), dead(y))→ willSuicide(x)

Here believes(x) is the context of the beliefs of the agent x. Our example leads us to the following
desiderata for expressivity:

1. Truth Representation: the ability to link truth in reality and in contexts (“ist(c, φ)→φ”)

2. Formula Quantification: the ability to quantify over formulas (“∀φ. ist(c, φ)”)

3. Context Quantification: the ability to quantify over contexts (“∀c. ist(c, φ)”), or even certain
forms of context (“∀x. ist(believes(x), φ)”)

Moreover, we want to perform automated reasoning, or at least semi-automated reasoning:

4. Semi-decidability: Logical entailment Γ |= ϕ should be semi-decidable.

Fulfilling these desiderata simultaneously is not trivial. One difficulty is that Desideratum 1 invites
complications from the Theorem of Undefinability of Truth of (Tarski, 1936): A language cannot
fully describe its own truth, assuming it includes basic arithmetic. This is because it allows self-
referential statements, which leads to contradictions.

One way to do contextual reasoning in logic is through modal logic. However, modal logic does
not consider formulas as objects that one can quantify over. Another classical way would be to use
higher-order logics, but these (typically) quantify over predicates rather than the syntactic formulas
themselves. Furthermore, they are usually not even semi-decidable. (Moore, 1981) proposes to
quote formulas as terms within the logic. However, the notion of context in this approach is very
restrictive. For example, it lacks a dedicated mechanism to express statements as simple as “If Juliet
believes all Capulets are nice, then for any Capulet x, she believes x is nice”.

It seems that the promising idea of using object-level counterparts to formulas within first-order
logic was never explored to produce a suitable framework for this form of general contextual rea-
soning. Thus, to the best of our knowledge, no logical framework currently satisfies all 4 desiderata
simultaneously (see Table 1, discussed in the related work section).

This article is an extended version of our previous conference paper (Coumes, Paris, Schwarzen-
truber, & Suchanek, 2024), which proposes representing formulas within contexts as regular terms
of the logic that obey a specific axiomatization. We borrow the ist predicate from (McCarthy, 1993).
We follow the idea of (Moore, 1981) to build terms that are structurally similar to formulas. (This
idea is itself an extension of Gödel’s numbers, see (Gödel, 1931).) We use the idea of (Tarski, 1936)
to introduce a special truth predicate and ensure that this predicate cannot be quoted. We then show
how these components can be axiomatized so that Desiderata 1-4 are fulfilled without falling for
the complications of Tarski’s theorem. The resulting framework, Qiana (Quantifying over Agents
and Assertions), is finitely axiomatizable and can thus be used with any First-Order-Logic theo-
rem prover. We also introduce a special character Q to nest quotations within quotations. This
allows for a larger array of manipulations around contexts, which are notably useful for our finite
axiomatization process.

In this paper, we improve the presentation of Qiana found in (Coumes et al., 2024), we extend
Qiana to reason about temporality and events, we present an alternative version of Qiana that is
based on typed logic, and we discuss how usual modal logics can be represented within Qiana.
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Qiana can model agents’ beliefs (as in our Romeo and Juliet example). Still, it can also be used
for paraconsistent reasoning (where a context contains contradictory statements), or to describe the
differences between two fictional contexts (e.g., two versions of the same story). The first part of
this paper largely follows our original paper on Qiana (Coumes et al., 2024): Section 2 discusses
the related work; Section 3 introduced notations; Section 4 explains how Qiana quotes formulas;
Section 5 defines Qiana; Section 6 discussed simple applications of Qiana; and Section 7 describes
the finite axiomatization process of Qiana for use with automated theorem provers.

In the second part of this paper, we provide more discussion that goes beyond the original
paper (Coumes et al., 2024). In Section 8, we extend Qiana to reason about temporality and events.
In Section 9, we present an alternative version of Qiana that is based on typed logic. In Section 10,
we discuss how usual modal logics can be represented in Qiana. Finally, Section 12 concludes.
Supplementary material, including the proofs of our theorems and the code of our implementation,
is available at https://github.com/dig-team/Qiana.

2. Related Work

Truth Formula Context Semi-
Representation Quantif Quantif decidable

Moore (1981) yes yes NA yes
Genesereth (1991) yes yes yes no
Halpern and Moses (1992) yes no no yes
McCarthy (1993) yes no no NA
Giunchiglia (1997) NA no no NA
Buvac and Mason (1993) NA no no yes
Buvac (1996) NA no yes no
Ghidini and Giunchiglia (2001) yes no no yes
Perrussel (2002) no no yes no
Ranganathan and Campbell (2003) NA no no yes
Carroll, Bizer, Hayes, and Stickler (2005) yes no no yes
Brewka, Eiter, Fink, and Weinzierl (2011) no no no yes
ISO (2018) yes no yes NA
Aljalbout, Buchs, and Falquet (2019) yes no no yes
Väänänen (2021) NA no NA no
Hartig, Champin, Kellogg, and Seaborne (2023) yes no no yes
Qiana yes yes yes yes

Table 1: Semi-decidability and the desiderata of Truth Representation, Formula Quantification, and Context
Quantification

John McCarthy (1987) observed that many statements are true only in a specific context. Several
follow-up works have elaborated on this idea, but none of them allows for Context Quantification
and Formula Quantification. The first of these elaborations was by McCarthy (1993) himself. He
proposed to write ist(c, p) to say that p is a proposition that is true in the context c. Thus, contexts
are treated as objects representing a state of the universe at a given instant. However, this work was

3



COUMES, PARIS, SCHWARZENTRUBER, SUCHANEK

based on propositional logic. Hence, it cannot deal with first-order formulas, let alone quantify over
contexts or formulas.

Buvac and Mason (1993) and Buvac, Buvac, and Mason (1994) formalized a propositional
modal logic version of McCarthy’s idea, which is sound, complete, and decidable. In their formal-
ism, ist is treated as a binary modality over propositions. Again, there is no possibility of quantifying
over contexts or formulas. Buvac (1996) extended this work to first-order logic and allowed the de-
scription of contexts through properties. For instance, ∀c. p(c)→ ist(c, ϕ) means that the formula ϕ
is true in every context with the property p. This logic is sound and complete; the work was the first
to allow quantification over contexts. However, unlike our approach, all contexts must have perfect
knowledge of each other’s beliefs, i.e., everyone knows what everyone else thinks. Furthermore,
unlike our approach, Buvac (1996) does not allow for quantification over formulas.1

Moore’s work on reasoning about knowledge (Moore, 1980, 1981) avoids the issues of self-
reference in higher-order logic by representing formulas as terms within the logic. A special truth
predicate connects these terms to their formula counterparts. This will also be done in Qiana.
However, Moore’s notion of context is quite restrictive: its many-worlds semantics assumes that
contexts are logically omniscient (if something is true within a context, then all its consequences
are also true). This is unsuitable to represent the knowledge of humans, whose reasoning depth
is limited. It also lacks an equivalent to our special escape function symbol Q, which is used to
put any given value into a quotation. Such a feature is important to present axioms that connect
what is true outside of contexts to what is true within them, e.g., for statements of the form “If
in a context it is true that a statement holds for all x, then that statement holds for all x in that
context”. Furthermore, there is no finite axiomatization, and thus, the method does not allow the
use of state-of-the-art theorem provers that Qiana permits.

Other works fall in the realm of epistemic and doxastic logics, which deal with the knowl-
edge and beliefs of agents, respectively. The modal approach has been widely adopted for both
cases (Hintikka, 1962). For instance, Halpern and Moses (1992) proposed a multi-modal logic to
deal with the knowledge and beliefs of multiple agents, where each agent has its own operators.
For example, Kiϕ means that the agent i knows ϕ, and Biϕ means that i believes ϕ. Considering
only the knowledge operators, this logic is equivalent to the formalism of Buvac and Mason (1993),
where each context is equivalent to a specific modality. However, these modal approaches have
no way to quantify over contexts. Furthermore, these approaches focus on propositional logic and
cannot deal with first-order formulas like Qiana.

Giunchiglia (1997) and Giunchiglia and Bouquet (1997) treat each context as a logical theory
with its own language, set of axioms, and set of rules. The main goal in this series of works is
the translation of formulas from one context to another. The works in this series study only the
propositional case and introduce no quantification. Ghidini and Giunchiglia (2001) propose that
contexts need two principles: locality (what is known by the agent) and compatibility (enforcing a
kind of coherence in viewpoints). While this approach can deal with first-order formulas, it does
not allow for quantified formulas or quantified contexts.

The Knowledge Interchange Format KIF (Genesereth, 1991) is a data format for database
knowledge exchange. With the help of a quotation operator, a formula can be reified and han-
dled as a syntactic element. However, KIF does not admit any complete proof theory. It is not
even semi-decidable because it goes beyond first-order logic (Väänänen, 2021). KIF’s successor,

1. According to Guha, McCool, and Fikes (2004), it is also not semi-decidable. However, Buvac (1996) contains proofs
of completeness and soundness, which entails semi-decidability.
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Common Logic (ISO, 2018) (CL), is a framework for a family of FOL-based languages. Unlike
KIF, CL has no quotation operator, and it does not have a built-in mechanism for handling contexts.
While some subsets of CL admit a complete proof theory, there is still no complete proof theory for
Common Logic as a whole (ISO, 2018; Mossakowski, Codescu, Kutz, Lange, & Grüninger, 2014;
Menzel, 2013). Suchanek (2005) proposes a translation from KIF to disjunctive logic programs, but
also does not offer a complete proof theory. Perrussel (2002) proposes a many-sorted modal first-
order logic. This approach cannot quantify over formulas, or express formulas such as ist(c, ϕ)→ ϕ
since no “super context” represents the real world.

In the work of Ranganathan and Campbell (2003), contexts are first-order predicates like Lo-
cation or Temperature. Hence, the approach cannot deal with quantified formulas. Brewka et al.
(2011) propose an approach to deal with different sources of knowledge. Each context is a knowl-
edge base with its language, and bridge rules allow communication between contexts and handle
inconsistencies. Intrinsically, it is not possible to quantify over formulas or contexts. More recently,
Aljalbout et al. (2019) proposed a two-dimensional ontology language that allows defining context-
dependent classes, properties, and axioms. It also allows expressing knowledge about contexts to
reason on contextualized triples. However, it is impossible to quantify over formulas or contexts.
Furthermore, the work uses description logics, which has limited expressiveness w.r.t. first-order
logic.

Other approaches of the Semantic Web, like RDF-star (Hartig et al., 2023) and named graphs (Car-
roll et al., 2005), can handle context but not truth representation. They can handle neither quantifi-
cation over contexts nor over formulas. One may think that second-order logic (Väänänen, 2021)
could be of help. However, classical higher-order logics allow quantification over predicates, not
over formulas. Taprogge and Steen (2023) extend the prover Leo-III with a form of higher-order
modal logic, but still does not allow quantification over formulas.

We thus conclude that no semi-decidable framework currently satisfies the desiderata of Truth
Representation, Formula Quantification, and Context Quantification.

3. Notations

Our work relies on the usual notions of first-order logic (FOL) (see, e.g., (Enderton, 2001) for a
primer). We use standard syntactic sugar notations, writing, e.g., φ→ ψ for ¬φ∨ψ. We also use the
usual substitution meta-notation: φ[x ← t] denotes the formula obtained by recursively replacing
all occurrences of variable x with t in φ until a quantification over x is reached.

For our purposes, a signature S is a tuple (F, P, V∞, δ), where F is a set of function symbols,
P is a set of predicate symbols, V∞ is an infinite set of variables, and δ : P ∪F → N a function that
gives the arity of each symbol. Constant symbols are function symbols of arity 0. A given signature
defines a set T of terms, and a set L of formulas.

A model is a tuple (D, [[]]) where D is a non-empty set called the domain of the model, and [[]] is
the interpretation mapping that maps each function symbol f to a function [[f ]] ∈ Dδ(f)→D, and
each predicate symbol p to a function [[p]] ∈ Dδ(p)→{0, 1}. An assignment is a partial function
σ : V∞ → D. Given an assignment for the free variables σ, we recall that terms (e.g., 1 + x) are
interpreted as elements in the domain (e.g., 1+ x is interpreted as the element [[+]]([[1]], σ(x))), and
formulas (e.g., p(x)) are interpreted as true/false (e.g., the semantics of p(x) is [[p]](σ(x)), which is
either 0 or 1).
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Recall that a theory is a set of formulas, and an axiom schema is a formula with meta-variables
(such as ¬¬φ → φ, where φ is a meta-variable that stands for a formula). We will occasionally
write the name of the axiom schema to stand for the set of all its instantiations in a given signature.

Let M be a model, σ an assignment of values in the domain of M to free variables, and H a
theory. We writeM,σ |= φ to say that the formula φ is true in modelM , where all the free variables
of φ are defined in σ. We omit σ if there are no free variables. We write H |= φ to say that φ is
a semantic consequence of H . A closed formula that is true in at least one model is coherent. A
theory for which there is a model that makes all the formulas true is also called coherent.

4. Quoting and unquoting formulas

The main idea of Qiana is to represent formulas that are true only in a specific context by quoted
formulas. Technically, a quoted formula is a term that represents a formula. FOL does not allow
to manipulate formulas as objects, which is why we need to introduce our quoted formulas, which
are terms that serve as counterparts of formulas we can manipulate. Intuitively speaking, quoting a
formula consists of replacing each logical connective, variable, predicate, and function symbol with
a fresh function symbol. We denote the quoted counterpart of a symbol z by z:

Example 1. The quotation of formula p(x)∧ (1+x = 2) is the term ∧(p(x),=(+(1, x), 2)) where
p,∧, 1,+, x,=, 2 are quoted counterparts to the original symbols p, ∧, 1, +, x, =, and 2. For
convenience and readability, we can write it p (x) ∧ (1 + x = 2)

We need to quote formulas that already contain quotations. To this end, we introduce a special
function symbol Q (read “quote”), which acts as an escape character and provides a way to nest
quotations. The symbol Q is called the escape operator or the quote operator.
To accommodate all these additional symbols, we extend our signature. We write ⊔ for the disjoint
union and define:

Definition 1 (augmented signature). Given a signature Sb= (Fb, Pb, V∞, δb) and a finite V ⊆ V∞,
the augmented signature S is the tuple (F, P, V∞, δ) with

• P = Pb ⊔ {T}

• F = Fb ⊔ F ⊔ P ⊔ V ⊔ {∧,¬,∀,Q} where

– F = {f | f ∈ Fb}
– P = {p | p ∈ P}
– V = {x | x ∈ V }

• V∞ remaining the same

• δ specifying that ∧, ∀, ¬, and Q are of arities 2, 2, 1, and 1, respectively. Furthermore, f has
the same arity as f , and p has the same arity as p. The arity of x is 0 for all x. The arity of T
is 1.

Without loss of generality, we assume that all the new symbols we introduce are not already in Sb.
In what follows, we assume a fixed signature Sb with an augmentation S. This signature implicitly
defines the set T of all terms. We write a∨b as syntactic sugar for ¬(¬a∧ ¬b), and a→b as syntactic
sugar for ¬(a)∨b.
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4.1 Quotation sets

Now that we have a quotation-compatible signature, we want to define the quotation function µ,
which takes a formula and returns its quoted equivalent. For this purpose, we have to introduce a
number of subsets of the set T of all terms, which can be roughly described as follows:

• T is the subset of all quotations of well-formed terms. For example, T contains the terms
+(1, 1) (which is the quotation of the term +(1, 1)) and f(Q(1)) (which is the quotation of
the term f(1)).

• L is the subset of all quotations of well-formed (possibly not closed) formulas. For example,
L contains the terms p(x) (which is the quotation of the formula p(x)) and p(Q(1)) (which
is the quotation of the formula p(1)).

• Q is the set of all terms made up of quotation symbols. The set Q includes both T and L.
However, it also contains quotations of non-well-formed terms and formulas. For example,
Q contains the term p(x ∧ 1) (which is the “quotation” of the non-well-formed expression
p(x ∧ 1)).

We provide Backus-Naur definitions of T , L, andQ below. For each of the subsets T , L, andQ we
introduce (respectively) Tv, Lv, andQv, which have similar definitions except that they also contain
the construction Q(x) with x a variable in V . This is necessary to allow variables in quotations.

We start by defining Q and Qv formally by two Backus-Naur Forms. Our grammars apply to
quotations of both terms and formulas:

Definition 2. The sets Q and Qv are defined inductively by:

Q := x | f(t1, . . . , tn) | p(t1, . . . , tn) | ∧(t1, t2) | ¬(t) | ∀(x, t) | Q(t)

for x ∈ V , f ∈ F , p ∈ P , t, t1, ..., tn ∈ Q
Qv := x | f(t1, . . . , tn) | p(t1, . . . , tn) | ∧(t1, t2) | ¬(t1) | ∀(x, t) | Q(t) | Q(x)

for x ∈ V , f ∈ F , p ∈ P , t, t1, ..., tn ∈ Qv

The subsets of T , Tv, (resp. L and Lv) are also defined by Backus-Naur Forms; but this time, we
permit only quotations of well-defined terms (resp. formulas) except with a special Q symbol.

Definition 3. The sets T , Tv,L,Lv are defined inductively by

T := x | f(t1, . . . , tn) | Q(tq)

for x ∈ V , f ∈ F , tq ∈ Q, t1, . . . , tn ∈ T
Tv := x | f(t1, . . . , tn) | Q(tq) | Q(x)

for x ∈ V , f ∈ F , tq ∈ Q, t1, . . . , tn ∈ Tv
L := p(t1, . . . , tn) | φ1

∧φ
2
| ¬φ

1
| ∀(x, φ1)

for x ∈ V , t1, . . . , tn ∈ T , p ∈ P ,φ1, φ2 ∈ L
Lv := p(t1, . . . , tn) | φ1

∧φ
2
| ¬φ

1
| ∀(x, φ1)

for x ∈ V , t1, . . . , tn ∈ Tv, p ∈ P ,φ1, φ2 ∈ Lv

In this definition, T , Tv (resp. L, Lv) contain only quotations of well-formed terms (resp. formulas)
– except in Q(tq) where tq may be a “quotation” of a non-well-formed expression.
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T Tq

Qv

Q

Lv

L

Tv

T Lq

L

Figure 1: Inclusion relationship (↪→) between subsets of the set of terms T and subset Lq of L.

4.2 Quoting

We now define the quotation function µ. This function takes a quotable formula or term and outputs
its quotation. We define µ jointly with the sets of terms and formulas it can be applied to.

The set of quotable terms Tq is the set of terms present in quotable formulas. These terms
contain only variables from V and are recursively formed with non-quotation symbols (the non-
underlined symbols) or with the image by µ of quotable elements. By quotable elements, we mean
elements of Tq or Lq. The set of quotable formulas Lq is the set of formulas for which we can
produce quotations. They contain only variables in V , do not contain the predicate T, and use only
terms from Tq. These are the formulas we can handle as objects of the logic, the formulas we can
say are true or false in a context.

We define Tq, Lq, and µ jointly by mutual induction.

Definition 4. The sets Tq,Lq are defined inductively by

Tq := x | tq | f(t1, . . . , tn)
for x ∈ V, f ∈ Fb, t1, . . . , tn ∈ Tq, tq ∈ µ(Tq ∪ Lq)

Lq := p(t1, . . . , tn) | ∀x. φ | ¬φ | φ1 ∧ φ2

for p ∈ Pb, t1, . . . , tn ∈ Tq, x ∈ V, φ, φ1, φ2 ∈ Lq

Definition 5. µ is inductively defined on Tq ⊔ Lq by:

µ(f(t1, . . . , tn)) := f(µ(t1), . . . , µ(tn))

µ(tq) := Q(tq)

µ(p(t1, . . . , tn)) := p(µ(t1), . . . , µ(tn))

µ(x) := x

µ(ϕ1 ∧ ϕ2) := ∧(µ(ϕ1), µ(ϕ2))
µ(¬ϕ) := ¬(µ(ϕ))

µ(∀x. ϕ) := ∀(x, µ(ϕ))

Range: f ∈ F , x ∈ V , t1, . . . , tn ∈ Tq, tq ∈ Q.

For ease of reading, whenever µ(φ) is defined, we write it as φ, underlining the entire argu-
ment. For instance, we write p(x) instead of p (x). Instead of ist(x,Q(happy(y))), we write
ist(x, happy(y)).

8



QIANA: LOGIC FOR CONTEXTUAL REASONING

Example 2. The term 1 + x with x ∈ V is quotable, i.e., 1 + x ∈ Tq. 1 + y with y ∈ V∞ \ V is
not. The term 1+x is not quotable because of the symbol +; but the term 1+x is quotable, because
it is the image by µ of 1 + x, which is quotable.

Example 3. The formula p(x) with x ∈ V is quotable, i.e., p(x) ∈ Lq. The formula P (1+x) is not
quotable since 1+x is not a quotable term. The formula p(1) is quotable.

Note that whenever we quote a formula that already contains a quotation, we put said quotation in
the Q symbol, to add a level of quotation:

Example 4. P (1 = 1) = µ(P (1 = 1)) = P (Q(1 = 1)).

The formulas inLq do not use the predicate T, it can never be quoted. This is an important restriction
that avoids the complications of Tarski’s Theorem of the undefinability of Truth (see Proposition 3
in Section 5).

4.3 Substitution on quotations

In our axiomatization, we also need a substitution function that substitutes not variables but quoted
variables. Its definition is similar to the standard substitution on first-order logic formulas:

Definition 6. Given t in T , given x in V , we define z[x← t]q on z ∈ Q inductively as:

f(t1, . . . , tn)[x← t]q = f(t1[x← t]q, . . . , tn[x← t]q)

x[x← t]q = t

p(t1, . . . , tn)[x← t]q = p(t1[x← t]q, . . . , tn[x← t]q)

y[x← t]q = y

∀(t1, t2)[x← t]q = ∀(t1[x← t]q, t2[x← t]q) if t1 ̸= x

∀(x, t2)[x← t]q = ∀(x, t2)
t1[x← t]q = t1 in all other cases

Range: x, y ∈ V (x ̸= y), t1, . . . , tn ∈ Tq, f ∈ F , p ∈ P

This quoted substitution function works just like the standard substitution:

Example 5. Applying the quoted substitution function:

p(x)∧∀(y, q(x, y))[x← 1 + 1]q = p(1 + 1)∧∀(y, q(1 + 1, y))

4.4 Unquoting

We are now ready to define the converse of the quoting operator µ:

9
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Definition 7. The unquote operator µ-1 is defined on Qv by the following recursive definition.

µ-1(f(t1, . . . , tn)) = f(µ-1(t1), . . . , µ-1(tn))

µ-1(p(t1, . . . , tn)) = p(µ-1(t1), ..., µ-1(tn))

µ-1(quote(t)) = t

µ-1(φ
1
∧φ

2
) = µ-1(φ

1
) ∧ µ-1(φ

2
)

µ-1(¬φ) = ¬µ-1(φ)

µ-1(∀(x, φ)) = ∀x. µ-1(φ[x← quote(x)]q)

µ-1(x) = x

µ-1(t) = t in all other cases

Range: f ∈ F , p ∈ P , x ∈ V , t, t1, . . . , tn ∈ Qv

The reason we use the notation µ-1 for our unquote operator is that it is the inverse of µ on the
image of µ. µ-1 is not limited to the inverse of µ, but it extends it.

Proposition 1. µ is injective on Lq.

Proof. We can prove by induction on (α, β) ∈ (Tq ⊔ Lq)2 that µ(α) = µ(β) implies α = β.

Proposition 2. ∀x ∈ Lq ∪ Tq, µ-1(µ(x)) = x

Proof. This is proven by induction on x ∈ Lq ∪ Tq.

Intuitively, µ adds a level of underlining on quotable formulas and terms, and µ-1 removes it:

Example 6. µ-1(ist(x, happy(y))) = ist(x, happy(y))

5. Defining Qiana

We can now define Qiana and its core axioms. The predicate T is designed to say that its argument
is true in reality, as given in the following axiom schema (for all φ ∈ Lq):

T(µ(φ))↔ φ (Atruth)

As famously shown by (Tarski, 1936), this form of predicate can lead to self-referential formulas
and incoherent theories (see (Enderton, 2001) for a more modern description). Here, the fact that
we did not allow the quotation of T will protect us from the pitfalls of Tarski’s theorem. We show
this with Proposition 3:

Proposition 3. Let S−T be the signature equal to S without the symbol T . Let H−T be a coherent
theory under the signature S−T. Let H be the closure of H−T under schema Atruth. H is coherent.

Proof. Let M−T be a model of H−T. We define M (the model of H) as equivalent to M−T on all
symbols except T. For each φ in L we check whether µ-1(φ) is true under M−T; M |= T(φ) if and
only if that is the case.

10
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5.1 Truth axioms

The axiom schema Atruth is not explicitly in a Qiana theory. It will be subsumed by axiom schemas A1
to A4, which conveniently admit direct counterparts in the finite axiomatization process of Sec-
tion 7.3. Here, x1, ..., xn are distinct variables.

∀x1, . . . , xn. T(p(t1, . . . , tm))↔ p(µ-1(t1), . . . , µ-1(tm)) (A1)

∀x1, . . . , xn. T(A∧B)↔ (T(A) ∧ T(B)) (A2)

∀x1, . . . , xn. T(¬A)↔ (¬T(A)) (A3)

∀x1, . . . , xn. T(∀(x,A))↔ (∀x. T(A[x← Q(x)]q)) (A4)

Range: p ∈ P, t1, . . . , tn ∈ Tv, A,B ∈ Qv, x ∈ V
Schema A1 concerns the truth of the quotation of an atomic formula. Schema A2 and Schema A3
are about the Boolean connectives. Schema A4 handles universal quantification through substituion
and the Q predicate; we illustrate this behavior in Example 8 bellow. Note that, different from Atruth,
Schemas A1-4 apply also to non-well-formed terms.

Example 7. The formulas T(¬P())↔ ¬T(P()) and T(¬2)↔ ¬T(2) are both instances of A3.

Axiom schema A4 is the treatment of the universal quantification. We substitute the quotation x of
a variable x by Q(x). Indeed, x is a constant symbol, and this mechanism enables to effectively
simulate the quantification through a quotation. The following example illustrates this mechanism.

Example 8. We show A1-4|=T(∀(x, P (x)))↔∀x. P (x).
To prove this, let M be a model of A1-4. We have:

M |= T(∀(x, P (x)))
iff M |= ∀x. T(P (x)[x← Q(x)]q) as M |= A4

iff M |= ∀x. T(P (Q(x)))

iff M |= ∀x. P (µ-1(Q(x))) as M |= A1

iff M |= ∀x. P (x) by Definition 7

We are now ready to prove that any instance of Atruth is a logical consequence of the theory A1-A4.

Proposition 4. A1-4 |= Atruth.

Proof. We prove this via induction on the following property: Let A ∈ Lv with no free quoted
variables (i.e., each x is quantified by a ∀). Let x1, . . . , xn be the free variables of A. Then

A1-4 |= ∀x1, . . . , xn. T(A)↔ µ-1(A)

We detail the proof in the supplementary material.

5.2 Axioms for reasoning in contexts

Reasoning axioms endow contexts with some inference power. They say that contexts that “know”
some things must also know some direct consequences of said things. We first introduce a few
general schemas to this end, including associativity, commutativity, and distributivity. For example,

11
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schema A5 tells us that in any context (represented by variable xc) if the conjunction of two formulas
is true (represented by their quotations through variables x1 and x2), then the first of these formulas
is also true.

∀xc, x1, x2. ist(xc, x1∧x2)→ ist(xc, x1) (A5)

∀xc, x1, x2. ist(xc, x1∧x2)↔ ist(xc, x2∧x1) (A6)

∀xc, x1. ist(xc,¬¬x1)↔ ist(xc, x1) (A7)

∀xc, x1, x2, x3. ist(xc, (x1∧x2)∧x3)↔ ist(xc, x1∧(x2∧x3)) (A8)

∀xc, x1, x2, x3. ist(xc, (x1∧x2)∨x3)↔ ist(xc, (x1∨x3)∧(x2∨x3)) (A9)

Other properties of associativity, commutativity, and distributivity can be deduced from the above,
also with the help of the definition of (a∨b) as ¬(¬a∧¬b). Next, we introduce the disjunctive
syllogism (modus ponens), which says that if an agent knows ϕ and ϕ⇒ ψ, then it also knows ψ:

∀xc, x1, x2. ist(xc, x1∨x2) ∧ ist(xc,¬x1)→ ist(xc, x2) (A10)

We also introduce an axiom schema that gives a context some ability to handle ∀: A quoted formula
can be replaced by each of its instantiations.

∀c. ist(c,∀(x, φ))→ ∀x. ist(c, φ[x← Q(x)]q) (A11)

Range: x ∈ V , ∀(x, φ) ∈ L

We illustrate the use of schema A11 with the example of Romeo and Juliet from the introduction
(Cap stands for being a member of Juliet’s family, the Capulets):

Example 9. Juliet believes that all Capulets are nice.

ist(believes(J), ∀x. Cap(x)→ nice(x))→ ∀x. ist(believes(J),Cap(Q(x))→ nice(Q(x)))

5.3 Qiana

We can now formally define a Qiana-closure theory:

Definition 8 (Qiana-closure theory). Let H be a theory. The Qiana-closure of H , denoted by HC ,
is the theory

HC = H ∪ A1-A11.

As an immediate property, we have semi-decidability:

Proposition 5 (Semi-decidability). If a theory H is recursively enumerable, then the problem of
deciding whether its Qiana closure HC entails some formula φ is semi-decidable.

Proof. Axiom schemas A1-A11 are recursive. Any recursively enumerable theory Σ leads to semi-
decidability of the entailment problem: given ϕ, decide whether Σ |= ϕ.

12
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6. Examples and discussion

6.1 Reasoning in Epistemic Contexts

Let us now reconsider the example of Romeo and Juliet from the introduction. For simplicity’s sake,
we will not model time in this example. This choice will result in seemingly absurd simultaneity but
should not hamper understanding. We start with our hypotheses from the introduction. We skip the
description of suicide and consider death a direct consequence of believing one’s love to be dead.

∀ϕ. ist(says(FriarLaurence), ϕ)→ T(ϕ) (1)

∀x, y. madlyLoves(x, y) ∧ ist(believes(x), dead(y))→ dead(x) (2)

Next, we state some obvious facts from the tragedy:

madlyLoves(Romeo, Juliet) (3)

madlyLoves(Juliet, Romeo) (4)

ist(says(FriarLaurence), ∀(x, drinkPotion(x)→ appearDead(x))) (5)

drinkPotion(Juliet) (6)

Finally, we need some world knowledge: by definition, people can see if someone appears dead.
They can also see if someone is dead.

∀c, x. appearDead(x) → ist(c, appearDead(x)) (7)

∀x, y. dead(y)→ ist(x, dead(y)) (8)

The next hypothesis is perhaps best summed up as “Romeo does not know how to check someone’s
pulse”:

∀x.ist(believes(Romeo), appearDead(x)→ dead(x)) (9)

We can now see the tragedy unfold:

∀x.drinkPotion(x)→ appearDead(x) from 1, 5 (10)

appearDead(Juliet) from 6 and 10 (11)

ist(believes(Romeo), appearDead(Juliet)) from 7, 11 (12)

ist(believes(Romeo), dead(Juliet)) from 12 and 9 (13)

dead(Romeo) from 13, 3, and 2 (14)

ist(believes(Juliet), dead(Romeo)) from 14 and 8 (15)

dead(Juliet) from 15, 2, and 4 (16)

6.2 Paraconsistency

In first-order logic, an inconsistent theory can be used to deduce anything: if H ⊢ (φ ∧ ¬φ) then
H ⊢ alive(Elvis). This phenomenon is called the principle of explosion. While this is still true in
Qiana theories, it is not true of the beliefs modeled inside contexts: a context can contain both a
statement and its negation, and no axiom schema of Qiana allows deducing arbitrary statements from
such beliefs (neither inside the context nor outside). This can be useful, e.g., to model contradictory
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beliefs. In our running example of Romeo and Juliet, let us assume for a moment that Romeo did
notice that Juliet had a pulse but did not conclude that Juliet was alive.

H := {dead(Juliet), hasPulse(Juliet),

∀x. ¬(alive(x) ∧ dead(x)), ∀x. hasPulse(x)→ alive(x)}

In normal first-order logic, this is an inconsistent theory, and it can thus be used to deduce anything:
H ⊢ alive(Elvis). Qiana, in contrast, emulates a paraconsistent logic inside contexts. Hence, the
principle of explosion does not apply inside contexts:

H ′ := {ist(believes(Romeo), dead(Juliet))

ist(believes(Romeo), hasPulse(Juliet))

ist(believes(Romeo),∀(x,¬(alive(x)∧dead(x))))

ist(believes(Romeo),∀(x, hasPulse(x)→ alive(x)))}

These contradictory thoughts now entail:

H ′ ⊢ ist(believes(Romeo), dead(Juliet))

H ′ ⊢ ist(believes(Romeo),¬dead(Juliet))

However, they do not imply that Romeo believes anything:

H ′ ̸⊢ ist(believes(Romeo), alive(Elvis))

If we want to keep the principle of explosion inside contexts, we can add the following axiom
schema to our theories (for all φ,ψ ∈ Lq):

∀c. ist(c, φ)→ ist(c, φ∨ψ) (17)

Together with modus ponens, it allows to deduce anything from a contradiction. From ist(c, φ) we
deduce ist(c, φ∨ψ). From ist(c,¬φ) and ist(c, φ∨ψ) we deduce ist(c, ψ).

6.3 Mixing different types of contexts

Until now, we have shown how to use contexts to model beliefs, and we have considered the play
itself as the truth. However, contexts can also encapsulate a story. To illustrate this, let us consider
two versions of the story of Romeo and Juliet: the original and a fanfiction variant. In the fanfiction
variant, Romeo decides to check Juliet’s pulse and notices that she is alive. He waits for her to come
to her senses and then they leave together and live happily ever after.

We start by declaring that the fanfiction and the original are both stories:

story(fanfiction) ∧ story(original)

In the fanfiction, Romeo checks Juliet’s pulse; in the original, he does not:

ist(fanfiction, checkPulse(R, J))

ist(original,¬checkPulse(R, J))
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In all stories, if Romeo checks Juliet’s pulse, he knows she is alive. In all stories, for all persons, if
Romeo does not feel their pulse and they appear dead, he thinks they are dead.

∀s. story(s)→ ist(s, checkPulse(R, J)→ ist(believes(R), alive(J)))

∀s. story(s)→ ist(s, ∀x. appearDead(x) ∧ ¬checkPulse(R,x)→ ist(believes(R),¬alive(x)))

In all stories, Juliet appears dead. In all stories, if Romeo knows Juliet is alive, he does not kill
himself, but he does if he thinks she is dead. In all stories the protagonists will be either both dead
or both alive:

∀s. story(s)→ ist(s, appearDead(J))

∀s. story(s)→ ist(s, ist(believes(R), alive(J))→ alive(R))

∀s. story(s)→ ist(s, ist(believes(R),¬alive(J))→ ¬alive(R))

These formulas – together with the axioms of Qiana – are enough to deduce that there is the usual
ending in the original version of the story and a vastly more fortunate one in the fanfiction story:

ist(original,¬alive(R))

ist(fanfiction, alive(R))

6.4 On the use of the quote symbol Q

The quote symbol Q is used to inject a value directly within a quotation. When we apply the unquote
operator µ-1 to a quotation containing Q, the content of Q will not be unquoted. For example:

µ-1(2) = µ-1(Q(2)) = 2

µ-1(P (Q(2))) = P (2)

To avoid any confusion, we recall that Q is a symbol of the logic not to be confused with µ,
which is a meta operator called the ‘quotation operator”. µ exists outside the logic itself and returns
the quotation of a given formula or term, preserving its structure. Most of the time, we write φ
instead of µ(φ). By contrast, Q is just a function symbol within the logic. It represents a function
of the domain of discourse, just like any other function symbol in FOL.
The two main purposes of Q are:

1. Nesting quotations

2. Using a variable inside a quotation

We first illustrate nested quotations. Let us say that Romeo believes that Juliet believes that he is
smart. We can write that Juliet believes that Romeo is smart as follows:

ist(believes(J), Smart(R))
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To say that Romeo believes that Juliet believes that he is smart, we need to quote the formula
above. To this end, we need the symbol Q:

ist(believes(R), ist(believes(J),Q(Smart(R))))

Using our notations, we could write this more compactly as follows:

ist(believes(R), ist(believes(J), Smart(R)))

If we instead wrote the formula without Q, we would end up with:

ist(believes(R), ist(believes(J), Smart(R)))

But ist(believes(J), Smart(R)) is not a well-formed quotation. If we were to try to unquote it,
we end up with the formula below. It is not a well-formed first-order formula, as Smart is a predicate
and, therefore, cannot appear in the argument of the predicate ist.

µ-1(ist(believes(J), Smart(R))) = ist(believes(J), Smart(R))

Hence we need the symbol Q to nest quotations.
Now we illustrate the second use of Q: using a variable inside a quotation. Let us say that

Romeo is very naive: all liars have successfully convinced him that they are honest. This does not
mean that Romeo believes that “all liars are honest”, which would be written as:

ist(believes(R),∀(cx,Liar(cx)→ Honest(cx)))

Instead, we want to say that for all liars, Romeo believes that person is honest. We can write this as:

∀x. Liar(x)→ ist(believes(R),Honest(Q(x)))

Without the symbol Q, we might try to write the following:

∀x. Liar(x)→ ist(believes(R),Honest(x))

But this does not work. We can notice this by instantiating the quantifier ∀ in the formula above.

Liar(Juliet)→ ist(believes(R),Honest(Juliet))

This makes no sense because Honest(Juliet) is not a well-formed quotation.

7. Finite axiomatization and theorem provers

7.1 Structure and overview

We will now show how the Qiana closure of any finite theory can be finitely axiomatized. Let
H be a given finite theory on a quotation-compatible signature S. The Qiana-closure of H is
HC = H ∪ A1-A4 ∪ A5-A10 ∪ A11 (see Definition 8). Both A1-A4 and A11 are infinite. Hence,
HC is also infinite. In this section, we will present a process to define another theory Hfin

C that
is both finite and equisatisfiable with HC . This will allow us to test the satisfiability of HC by
feeding finitely many formulas (the elements of Hfin

C ) to a theorem prover. Subsections 7.2 and 7.3
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HC := H ∪

Hfin
C := H ∪

A5-10

A5-10

∪

∪

A1-A4

A1fin-A4fin

∪

∪

A11

A11fin ∪ A12-34

Hfin
ist

Hfin
ist

HT

Hfin
T Hfin

tools

Figure 2: Overview of the process of finite axiomatization. Zizag arrows indicate the finite sets are coun-
terparts to the top infinite ones. Dotted arrows indicate the the elements of Hfin

tools are used to define said
counterparts.

will introduce secondary sets of use in this finite axiomatization. Subsection 7.4 concludes the
presentation of this process and gives the relevant results.

We write Hfin
ist = A5-A10. Fortunately, Hfin

ist is finite. However, we must replace the infinite
axiom schemas A1-A4 and A11. To do so, we extend the signature S to another signature S′,
which contains new symbols that we describe with additional (finite) schemas. Together, these new
schemas form the setHfin

tools. We present these symbols and the setHfin
tools in Subsection 7.2. Based on

these symbols and their definition schemas, we introduce finite counterparts to our infinite schemas
in Subsection 7.3. These are the sets Hfin

T and H∀. Together, these sets allow us to define a new set
Hfin

C = H ∪A5-A10∪Hfin
tools∪H

fin
T ∪H∀, which is finite and equisatisfiable withHC (see Figure 2).

We present some interesting properties of the process in Subsection 7.4, the most important being
the correctness of the process.

7.2 Utility symbols for the finite axiomatization

We will now introduce new symbols that will allow us to define the finite axiomatization of Qiana.
We consider a fixed and finite theory H on S. Without loss of generality, we introduce two fresh
function symbols Sub and E and three predicate symbols Wft, Term, and =. By adding these symbols
to S we obtain a larger signature S′. We now give the axiom schemas that describe the behavior of
these symbols. The symbol = is the standard equality predicate defined by the following axioms, in
which x, y, z, x1, . . . , xn, y1, . . . , yn are distinct variables:

∀x. x = x (A12)

∀x, y. x = y → y = x (A13)

∀x, y, z. x = y ∧ y = z → x = z (A14)

∀x1, .., xn, y1, .., yn. x1 = y1 ∧ .. ∧ xn = yn → f(x1, .., xn) = f(y1, .., yn) (A15)

∀x1, .., xn, y1, .., yn. x1 = y1 ∧ .. ∧ xn = yn → p(x1, .., xn)↔ p(y1, .., yn) (A16)

Range: f ∈ F, p ∈ P

The symbol Term checks whether its argument can be expressed as a term. More precisely, Term(t)
is true if t is a closed term or has all its open variables behind a Q statement:

∀x. Term(Q(x)) (A17)

∀t1, . . . , tn. (Term(t1) ∧ · · · ∧ Term(tn))→ Term(f(t1, . . . , tn)) (A18)
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Range: f ∈ F

The symbol Wft stands for “well-formed term”. Intuitively, Wft(t) is true iff t represents a quotation
of a well-formed term (i.e., t ∈ Qv):

∀y. Wft(Q(y)) (A19)

Wft(x) (A20)

∀t1, . . . , tn. (Wft(t1) ∧ · · · ∧Wft(tn))→ Wft(f(t1, . . . , tn)) (A21)

Range: x ∈ V , f ∈ F

The symbol E is the counterpart to µ-1 on quoted terms. More precisely, E(t) is defined to
inductively evaluate to the value that t is a quotation of, when applicable:

∀t. Term(t)→ E(Q(t)) = t (A22)

∀t1, .., tn. Term(t1) ∧ .. ∧ Term(tn)→ E(f(t1, .., tn)) = f(E(t1), .., E(tn)) (A23)

∀t1, .., tn.(Term(t1) ∧ .. ∧ Term(tn))→ E(p(t1, .., tn)) = p(t1, .., tn) (A24)

∀t1, t2. E(∧(t1, t2)) = ∧(t1, t2) (A25)

∀t1, t2. E(∀(t1, t2)) = ∀(t1, t2) (A26)

∀t. E(¬(t)) = ¬(t) (A27)

E(x) = x (A28)

Range: x ∈ V , f ∈ F, p ∈ P

When no step of this induction can be carried out, we have E(t) = t (Axiom Schema A24-A28).
The symbol Sub is an in-logic counterpart of the substitution operator in Definition 6. The term

Sub(t1, t2, t3) represents t1[t2 ← t3]q:

∀t. Term(t)→ Sub(x, x, t) = t (A29)

∀t. Term(t)→ Sub(x, y, t) = x (A30)

∀t, t1, .., tn. (Term(t1) ∧ .. ∧ Term(tn))→
Sub(f(t1, .., tn), x, t) = f(Sub(t1, x, t), .., Sub(tn, x, t)) (A31)

∀t1, t2. (Term(t1) ∧ Term(t2))→ Sub(∀(x, t1), x, t2) = ∀(x, t1) (A32)

∀t1, t2. (Term(t1) ∧ Term(t2))→ Sub(∀(y, t1), x, t2) = ∀(y, Sub(t1, x, t2)) (A33)

∀t1, t2. (Term(t1) ∧ Term(t2))→ Sub(Q(t1), x, t2) = Q(t1) (A34)

Range: x, y ∈ V (x ̸= y), f ∈ F, p ∈ P

We group all these helper axiom schemas together as a theory Hfin
tools:

Definition 9. Hfin
tools := A12-A34.
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7.3 Finite counterparts to infinite schemas

Let us write HT = A1-4. The set HT defines the behavior of T on well-formed formula quotations.
Now that we have introduced new symbols to act as in-logic counterparts to the most important
meta-operators of these schemas, we can introduce new finite schemas that mimic the behavior of
A1-4 with finitely many formulas. This is done with Hfin

T :

Definition 10. Hfin
T = A1fin-A4fin.

∀t1, .., tn. (Wft(t1) ∧ .. ∧Wft(tn))→ T(p(t1, .., tn))↔ p(E(t1), .., E(tn)) (A1fin)

∀t1, t2. (Term(t1) ∧ Term(t2))→ T(t1∧t2)↔ (T(t1) ∧ T(t2)) (A2fin)

∀t1. Term(t1)→ T(¬t1)↔ (¬T(t1)) (A3fin)

∀t1. Term(t1)→ T(∀(x, t1))↔ (∀x. T(Sub(t1, x,Q(x)))) (A4fin)

Range: p ∈ P \ {T}, x ∈ V

Likewise, we define schema A11fin as a finite counterpart to schema A11.

∀t1, t2. Term(t1)→ ist(t2, ∀(x, t1))→ ∀x. ist(t2, Sub(t1, x,Q(x))) (A11fin)
Range: x ∈ V

7.4 Correctness

Definition 11. We can now formally define the finite axiomatization of Qiana on H as the set Hfin
C :

Hfin
C := H ∪Hfin

ist ∪H
fin
tools ∪H

fin
T ∪A11

fin

Recall that the Qiana-closure of H is HC = H ∪Hfin
ist ∪ A1-4 ∪ A11. The following theorem and

corollary say that it is equivalent to reason with the theories HC or Hfin
C :

Theorem 1. HC is coherent if and only if Hfin
C is coherent.

Proof. Recall that “HC is coherent” is equivalent to HC ̸|= ⊥. Hence the theorem becomes HC ̸|=
⊥ iff Hfin

C ̸|= ⊥. In the supplementary material, we prove both directions of this equivalence in
Propositions 10 and 11.

Corollary 1. HC |= φ if and only if Hfin
C |= φ, for all φ

Proof. Apply Theorem 1 to the theory H ∪ {¬φ}.

The following proposition says that the number of formulas created by the finite axiomatization
process is quadratic in the total number of symbols, excluding the variables that are not quotable.

Proposition 6. The cardinal of Hfin
ist ∪H

fin
tools ∪H

fin
T is in O(|S|2), where |S| is the total number of

symbols in S, excluding V∞ \ V .

We introduced a finite number of quoted variables to make this finite axiomatization process
possible. Indeed, each quoted variable needs to appear at least once within the finite axiomatization.
Since the process uses finitely many formulas of finite length, it cannot handle an infinite number
of quoted variables. Nevertheless, any reasoning that can be carried out with an infinite number of
variables can also be done with a finite number of variables:
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Proposition 7. Let H be a theory, and let Hn
C be the Qiana closure of H where V has size n ∈ N,

and let H∞
C be the Qiana closure of H obtained by allowing the set V to be infinite. Let φ be any

well-formed closed formula. Then if H∞
C |= φ then there is some n ∈ N such that Hn

C |= φ.

Proof. Any proof derivation of φ from H∞
C uses finitely many formulas, which are all in Hn

C for
some n.

Thus, the finiteness of the set V of quotable variables is not a limitation on the reasoning power.
When checking some entailment, we can iteratively increase the size of V to check if the entailment
appears. Considering that our theory is semi-decidable rather than decidable, we do not lose any
deductive power.

7.5 Using Qiana in Theorem Provers

Our finite axiomatization allows us to transform the Qiana closure of any finite theory into an equi-
satisfiable finite first-order logic theory, which can then be fed into an Automated Theorem Prover
(ATP). We have implemented a translator (in Python) that accepts a set of Qiana formulas, derives
their signature, and outputs a finite set of Qiana axioms in the TPTP syntax (Sutcliffe, 2009).

This allows us to run the Romeo and Juliet example from Section 6 in the Vampire theorem
prover (Riazanov & Voronkov, 2001). The reasoning takes 0.05 seconds on an 8th-generation Intel
CPU laptop. Vampire duly proves that both Romeo and Juliet die. The code and the example are
available at https://github.com/dig-team/Qiana.

8. Temporality in Qiana

In this section, we extend Qiana for temporal reasoning. In order to take advantage of the Qiana
approach, we rely on event calculus which is also based on first-order logic. There are several modal
logics to deal with time that are modal logic: linear-temporal logic (LTL), computational tree logic
(CTL), etc. However, contrary to event calculus, time instants are not explicit in LTL/CTL, which
makes them less powerful.

8.1 Overview of Event Calculus

Event calculus is a popular family of formalisms to represent actions and their effects on systems
through time. In this article, we follow the definitions of Shanahan (2000), which we chose for its
clarity and concision. Event calculus is based on the following concepts. Fluents are properties of
the system that can change over time; there is typically a finite set of fluents under consideration.
Actions (also called Events) occur at points in time or during time intervals and can change the value
of fluents.

Here are a few example sentences written in classical event calculus and toying with the Romeo
and Juliet story:

• The construction HoldsAt(Alive_Romeo, t), meaning that Romeo is alive at instant t. Here,
the fluent is Alive_Romeo, and the time is t.

• The construction Happens(Drink_Potion_Juliet, t1, t2) means that Juliet drinks a potion be-
tween time t1 and t2. Here the action is again Drink_Potion_Juliet.
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• The construction Happens(Drink_Potion_Juliet, t) means that Juliet drinks a potion at time
t. Here the action is Drink_Potion_Juliet. Note the operator overload on Happens with the
previous statement. In fact, Happens(a, t) is simply syntactic sugar for Happens(a, t, t).

• The construction Initiates(Appear_Dead_Juliet,Drink_Potion_Juliet, t) means that drinking
a potion makes Juliet start appearing dead at time t. Here the fluent is Appear_Dead_Juliet
and the action is Drink_Potion_Juliet.

It should be noted that fluents are atomic and cannot be connected to form more complex flu-
ents (there are no equivalents of ¬ or ∧ on fluents). Also, this formalism features a notion of inertia.
When a fluent becomes true it remains so unless it is “clipped”, which is represented by a dedicated
predicate Clipped. This behavior is formaly defined by axioms EC1, EC2, and EC3 in Subsec-
tion 8.2, which we present with Qiana notations. Table 2 lists and describes the main operators of
event calculus.

Event Calculus operator Description
0 The first time instant

i1 < i2 Instant i1 occurs before instant i2
Initially(φ) Nontemporal quoted formula φ holds at the beginning

HoldsAt(φ, i1) Nontemporal quoted formula φ holds at time i1
Happens(a, i1, i2) Action a happens between times i1 and i2
Initiates(a, φ, i1) If action occurs at time i1 it initiates φ at that time

Terminates(a, φ, i1) If action occurs at time i1 it terminates φ at that time
Releases(a, φ, i1) φ is not subject to inertia after action a at time i1
Clipped(i1, φ, i2) φ is terminated between times i1 and i2

Declipped(i1, φ, i2) φ is initiated between times i1 and i2

Table 2: Matching Event Calculus operators to their descriptions

This concludes our presentation of event calculus. In the next subsection, we describe how to
adapt event calculus to Qiana.

8.2 Event calculus in Qiana

Because the full event calculus of Shanahan (2000) is based on first-order logic, its adaptation to
Qiana will be relatively straightforward. We allow using any quoted formula as a fluent and write
the axioms of event calculus in Qiana. This requires the introduction of a few new symbols to Qiana
to match the operators of event calculus.

The event calculus presented in Shanahan (2000) also contains an operator InitiallyN to say
that some fluent is initially false. Thanks to the quote symbol ¬, we write Initially(¬ f) instead of
InitiallyN (f).

Here are the axioms of event calculus in Qiana:
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∀f, t. HoldsAt(f, t)← InitiallyP (f) ∧ ¬Clipped(0, f, t) (EC1)

∀f, t3, a, t1, t2. HoldsAt(f, t3)

← Happens(a, t1, t2) ∧ Initiates(a, f, t1) ∧ ¬Clipped(t1, f, t3) ∧ t2 < t3 (EC2)

∀t1, f, t4. Clipped(t1, f, t4)↔ ∃a, t2, t3. Happens(a, t2, t3)∧
(Terminates(a, f, t2) ∨ Releases(a, f, t2)) ∧ t1 < t3 ∧ t2 < t4 (EC3)

∀f, t. ¬HoldsAt(f, t)← Initially(¬f) ∧ ¬Declipped(0, f, t) (EC4)

∀f, t3, a, t1, t2. ¬HoldsAt(f, t3)

← Happens(a, t1, t2) ∧ Terminates(a, f, t1) ∧ ¬Declipped(t1, f, t3) ∧ t2 < t3 (EC5)

∀t1, f, t4. Declipped(t1, f, t4)↔ ∃a, t2, t3.
Happens(a, t2, t3) ∧ (Initiates(a, f, t2) ∨ Releases(a, f, t2)) ∧ t1 < t3 ∧ t2 < t4 (EC6)

∀a, t1, t2. Happens(a, t1, t2)→ t1 ≤ t2 (EC7)

Remark 1. We do nothing to prevent the use of the quotation of temporal statements as fluent.
For example, nothing explicitly prevents the use of Happens(drink(P, J), t) as a fluent. This is a
choice we make to simplify the formalism, but we also make no special effort to give them a special
meaning. Hence, they can be considered as any other meaningless quotation we could, in theory,
pass to a temporal operator. Because no axiom allows their introduction in a temporal context, this
creates no problem.

8.3 Example

We will now adapt our running example of Romeo and Juliet (Section 6.1) to our temporal frame-
work. We will tell the same story as before, but we will now account for time: At first Romeo is
alive, then he sees Juliet, then he dies. We will use the following axioms:

∀φ. ist(says(L), φ)→ T(φ) (18)

ist(says(L),∀t. Happens(drink(P, J), t)→ Initiate(drink(J, P ),LookDead(J), t)) (19)

tdrink < tsee (20)

Happens(drink(P, J), tdrink) (21)

Happens(see(R, J), tsee) (22)

¬Clipped(LookDead(J), tdrink, tsee) (23)

∀t1, p. HoldsAt(LookDead(Q(p)), t1)→ Initiate(See(R, p), ist(bel(R), dead(p)), t1) (24)

∀t1. HoldsAt(ist(bel(R), dead(J)), t1)→ Happens(die(R), t1) (25)

Note the different kinds of elements. The terms see(R, J) and die(R) are actions. LookDead(J)
is a formula (like dead(J)), its quotation LookDead(J) is a fluent. Two points in time are important
to the story: the time tdrink when Juliet drinks the potion and the time tsee when Romeo sees Juliet.
Formulas 18 and 19 behave similarly to their counterparts Formula 1 and Formula 5 in Section 6.1,
except that Laurence now says Juliet will “start looking dead”, rather than simply “look dead”.
Formula 21 states that Juliet drinks the potion, and formula 23 states that Juliet does not wake up
before tsee. Hence Juliet looks dead at time tsee. Together with formulas 22 and 24 this tells us that
Romeo starts believing Juliet is dead, which leads to his own death (Formula 25).
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8.4 The frame problem and differences between Qiana and Event Calculus

The frame problem is a classic issue in formalisms that model change over time, and it is the reason
for a variation in the semantics between the event calculus of Shanahan (2000) and Qiana.

To explain this difference, we begin by explaining the frame problem. The frame problem
arises because things generally remain unchanged unless something happens to them to make them
change. This is referred to as inertia—the natural tendency of systems to stay in their current state.
The challenge is how to formalize this idea without having to explicitly list every possible situation
in which something might change.

The solution used by event calculus is circumscription. Entailment in event calculus relies on
axioms, normal first-order logic (FOL) entailment, and a function called circumscription. The idea
is to use Circum(Γ) which represents an extansion of Γ with reasonable assumptions. The full
definition of Circum(Γ) is omitted here and we refer the reader to Shanahan (2000) for a more
complete explanation. The two following facts are important:

Circum(Γ) |= Γ

Γ |=EC φ⇔ Circum(Γ) ∪ EC |= φ

where |=EC is the entailment of event calculus and EC the set of axioms of event calculus.
In a sense, the entailment of event calculus (with circumscription) is weaker than normal FOL

entailment. Valid FOL entailment still holds under it, but the entailment of event calculus also
makes additional assumptions.

We do not port this entailment to Qiana; instead, we only bring the axioms of event calculus to
Qiana, which we use with normal FOL entailment. Therefore, our form of entailment is stronger
than the one of event calculus, meaning it is sound but not complete with respect to it. We prove
this with Proposition 8.

Proposition 8. Let Γ be a set of formulas valid under event calculus. Let HTQ be the set of axioms
of temporal Qiana, and let φ be a temporal formula valid under event calculus. Then:

Γ ∪HTQ |= φ =⇒ Γ |=EC φ

Proof. Suppose Γ ∪HTQ |= φ. Then, we have:

Circum(ΓECQ) ∪HTQ |= φ

Since the temporal axioms of Qiana follow the axioms of event calculus, we obtain:

Circum(ΓECQ) ∪HTQ |= φ =⇒ Circum(ΓECQ) ∪ EC |= φ

By definition, this is equivalent to:
Γ |=EC φ

Considering that temporality and contexts are largely orthogonal in Qiana, nothing stops us from
defining a circumscription operator in Qiana and using it to define another notion of entailment for
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our logic. However, the fact entailment in Qiana is just FOL entailment with certain axioms is
an important feature of the logic. Therefore, we consider the simple application of the axioms of
event calculus to be the most appropriate way to model temporal reasoning in Qiana. The temporal
version of Qiana follows event calculus but does not include its additional assumptions regarding
inertia.

9. Typing Qiana

A Qiana theory uses different types of objects: formulas, quoted formulas, terms, and (together
with event calculus) events, actions, and fluents. The boundary between these types is sometimes
porous: One way to make the distinction clearer is to resort to typed first-order logic (also known as
many-sorted FOL). In what follows, we define a typed version of Qiana that distinguishes different
types of objects more clearly. This typed version of Qiana can be considered more intuitive, and the
ability to distinguish natively between different types could be useful in concrete applications with
complex rules mixing different types of objects. However, types make formulas longer and create
multiple technical issues that have to be handled throughout the entire process of typing Qiana. In
particular, the finite axiomatization process of Section 7 becomes more complex and much longer
(see Subsection 9.4). Hence, we define the typed version of Qiana here merely as a theoretical
exercise.

9.1 A quick summary of typed first-order logic

Typed FOL (first-order logic) is sometimes also called many-sorted FOL. We will give only a quick
summary of the topic here and redirect the unfamiliar reader to the literature (Manzano, 1996).
Many variations on typed FOL have been proposed, but we will use the basic one simply called
“many sorted FOL”, which is what we present below.

In many-sorted FOL, the signature includes a finite set U of types. All function symbols and
predicate symbols have a signature, indicating the types of their arguments and the type of the
output in the case of functions. Variable symbols also have an associated type and we assume there
are countably many symbols of each type. The type of a term is the type of its top-level symbol
(a function symbol or a variable). A term can be used as an argument to a predicate or function
only if it has the correct type, as indicated by the signature of the predicate or function. Models of
many-sorted FOL are similar to models of unsorted FOL, but the domain of the model is partitioned
into disjoint sets, one for each type.

Remark 2. Ideally, we would have preferred to use a flavor of typed FOL that allows non-disjoint
types, such as order-sorted FOL. However, as far as we know, all ATPs (Automated Theorem
Provers) that support TPTP input (and, in fact, all ATPs we know of) support only disjoint types. In
order to maintain the compatibility of Qiana with existing ATPs, we will have to use disjoint types.

9.2 Types for Qiana

Table 3 introduces the types used to produce typed-Qiana, along with their short descriptions.
We extend the FOL signature (F, P, V∞, δ) to (F, P, V∞, δ, U) by adding a finite set of types U ,

and adapting δ and V∞. We have U = {o, q, c, τ, a}.
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Type Name Description
o Objects Non-Qiana objects (people, places, ...)
q Quotations Type of all quotations (quoted formulas, quoted terms, ...)
c Contexts Contexts
τ Time instant Event calculus points in time.
a Actions Event calculus actions

Table 3: Types and their descriptions in Qiana

Whereas δ gave the arity of symbols so far, now δ takes the types into account. More precisely, δ
gives a signature to each predicate and function symbol, and a type to each variable symbol.

for each p ∈ P, δ(p) ∈ U⋆

for each f ∈ F, δ(f) ∈ U⋆ × U
for each v ∈ V∞, δ(v) ∈ U

where δ(f) ∈ U⋆ ×U means that f has a signature of the form γ1 × · · · × γn → γo, with n the
arity of f and γ1, . . . , γn, γo ∈ U . For example δ(ist) = c× q.

Also, we assume that there is an infinity of variable symbols of each type:

for each γ ∈ U, | { v ∈ V∞ | δ(v) = γ } | = +∞

Remark 3. If needed in practical applications, we can always split the type o into multiple subtypes.
Here, we present everything with a single type for non-Qiana-specific objects; this is without loss of
generality, and everything can be straightforwardly adapted to the case where o is split into many
subtypes.

We introduce multiple notations to indicate the types of symbols we use. We will alternate
between the notations depending on which are most convenient for the formulas we write.

First, we can directly indicate the type of one or multiple symbols in a separate line: The
following line indicates that f takes as arguments an object and a time instant, and returns a context,
that p takes a context, and that p2 has no argument (i.e., it is an atomic predicate).

f : o× τ → c; p : c; p2 : ()

We can also indicate the type of a symbol by writing the type as an exponent. In the following
formula, t1 and t2 are variables of type o, t3 is a variable of type c, and p can implicitly be deduced
to be a predicate of signature o2 × c.

∀to1, to2, tc3. p(to1, to2, tc3)

We can indicate the type of variables during quantification. The following formula is equivalent
to the previous one:

∀ot1, t2. ∀ct3. p(t1, t2, t3)

Lastly, in some contexts, the type can be clearly inferred from the context, and therefore, no
additional type annotations are necessary.
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In this section, we will first always include a type indication. This is because the first axioms
we present will also serve as examples of our typing notations. However, we will gradually omit
type annotations as they would only make our formulas less readable without any gain in clarity.

Example 10. In the following, we explicitly type each symbol as an example. In total, this formula
contains terms of type q, c, τ , and a.

between : τ × τ → c

φ : ()→ q

a : ()→ a

∀tτ1 , tτ2 . ist(between(t1, t2), Initiates(a, φ))→ ist(between(t1, t2), φ)

9.3 Typing the general Qiana axioms

We now present a typed version of the general Qiana axioms presented in Section 5, using the types
introduced in Table 3.

∀xγ11 , . . . , x
γn
n . T(p(t1, . . . , tm))↔ p(µ-1(t1), . . . , µ-1(tm)) (A35)

Range: p ∈ P, t1, .., tn ∈ Tv with ∀i. δ(µ-1(ti)) = δ(p)i, x
γ1
1 , .., x

γn
n the free variables in t1, .., tm

∀xγ11 . . . , xγnn T(A∧B)↔ (T(A) ∧ T(B)) (A36)

∀xγ11 . . . , xγnn T(¬A)↔ (¬T(A)) (A37)

∀xγ11 . . . , xγnn T(∀(x,A))↔ (∀γx. T(A[x← Qγ(x)]q)) (A38)

Range: A,B ∈ Qv, x
γ1
1 . . . , xγnn the free variables in A,B, x a quoted variable of type γ

∀cxc,∀qx1, x2. ist(xc, x1∧x2)→ ist(xc, x1) (A39)

∀cxc,∀qx1, x2. ist(xc, x1∧x2)↔ ist(xc, x2∧x1) (A40)

∀cxc,∀qx1. ist(xc,¬¬x1)↔ ist(xc, x1) (A41)

∀cxc,∀qx1, x2, x3. ist(xc, (x1∧x2)∧x3)↔ ist(xc, x1∧(x2∧x3)) (A42)

∀cxc,∀qx1, x2, x3. ist(xc, (x1∧x2)∨x3)↔ ist(xc, (x1∨x3)∧(x2∨x3)) (A43)

∀cxc,∀qx1, x2. ist(xc, x1∨x2) ∧ ist(xc,¬x1)→ ist(xc, x2) (A44)

∀cxc. ist(xc, ∀(x, φ))→ ∀γx. ist(xc, φ[x← Qγ(x)]q) (A45)

Range: x a quoted variable of type γ,∀(x, φ) ∈ L

9.4 Typing the finite axiomatization

We now present a typed version of the finite axiomatization presented in Section 7, using the types
introduced in Table 3. Most are straightforward adaptations of the ones from Section 7. There
is a single type q for all quotations, but the core idea of the finite axiomatization process is to go
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over the quoted formula and interpret them recursively within the top-level domain of discourse. In
particular, the function E matches a quoted term to the actual term it is a quotation of. Because
terms can have different types, we need to create multiple versions of E with different output types.
We will write Eγ for the version of E that matches the quotation of a term of type γ to said term.

Also, we need to rework the axiomatization of Wft so that it also checks that the quotation is
well-typed. To do so, we introduce one instance of Wft per type γ, which we write Wftγ .

Likewise, we introduce multiple versions of the equality predicate = and the reachability predi-
cate Term.

∀γx. x =γ x (A46)

∀γx, y. x =γ y → y =γ x (A47)

∀γx, y, z. x =γ y ∧ y =γ z → x =γ z (A48)

∀xγ11 , .., x
γn
n , yγ11 , .., y

γn
n . xγ11 =γ1 y

γ1
1 ∧ .. ∧ x

γn
n = yγnn → f(xγ11 , .., x

γn
n ) =γo f(y

γ1
1 , .., y

γn
n )
(A49)

∀xγ11 , .., x
γn
n , yγ11 , .., y

γn
n . xγ11 =γ1 y

γ1
1 ∧ .. ∧ x

γn
n = yγnn → p(xγ11 , .., x

γn
n )↔ p(yγ11 , .., y

γn
n )

(A50)

Range: f ∈ F, p ∈ P, γ, γo, γ1, . . . , γn ∈ U, δ(f) = γ1 × · · · × γn → γo, δ(p)γ1 × · · · × γn

∀γx. Termq(Qγ(x)) (A51)

∀t1, . . . , tn. (Termγ1(t1) ∧ · · · ∧ Termγn(tn))→ Termγo(f(t1, . . . , tn)) (A52)

Range: f ∈ F, γ, γo, γ1, ..., γn ∈ U

∀yγ . Wftγ(Qγ(y
γ)) (A53)

Wftγ(x) (A54)

∀qt1, . . . , tn. (Wftγ1(t1) ∧ · · · ∧Wftγn(tn))→ Wftγo(f(t1, . . . , tn)) (A55)

Range: x ∈ V a quoted variable of type γ, f ∈ F such that δ(f) = γ1 × ...× γn → γo, γ ∈ U

∀γt. Termγ(t)→ Eγ(Qγ(t)) = t (A56)

∀t1, .., tn. Term(t1) ∧ .. ∧ Term(tn)→ E(f(t1, .., tn)) = f(E(t1), .., E(tn)) (A57)

Range: x ∈ V , f ∈ F, p ∈ P

∀t. Termq(t)→ Sub(x, x, t) = t (A58)

∀t. Termq(t)→ Sub(x, y, t) = x (A59)

∀t, t1, . . . , tn. (Termq(t1) ∧ · · · ∧ Termq(tn))→ Sub(f(t1, . . . , tn), x, t) =

f(Sub(t1, x, t), . . . , Sub(tn, x, t)) (A60)

∀t1, t2. (Termq(t1) ∧ Termq(t2))→ Sub(∀(x, t1), x, t2) = ∀(x, t1) (A61)

∀t1, t2. (Termq(t1) ∧ Termq(t2))→ Sub(∀(y, t1), x, t2) = ∀(y, Sub(t1, x, t2)) (A62)

∀tγ1 , t
q
2. (Termγ(t1) ∧ Termq(t2))→ Sub(Qγ(t1), x, t2) = Qγ(t1) (A63)
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Range: x, y ∈ V (x ̸= y), f ∈ F, p ∈ P, γ ∈ U

Definition 12. Hfin
T = A1fin-A4fin

∀t1, .., tn. (Wftγ1(t1) ∧ .. ∧Wftγn(tn))→ T(p(t1, .., tn))↔ p(Eγ1(t1), .., Eγn(tn)) (A1fin)

∀t1, t2. (Termq(t1) ∧ Termq(t2))→ T(t1∧t2)↔ (T(t1) ∧ T(t2)) (A2fin)

∀t1. Termq(t1)→ T(¬t1)↔ (¬T(t1)) (A3fin)

∀t1. Termq(t1)→ T(∀(x, t1))↔ (∀xγ . T(Sub(t1, x, quoteγ(x)))) (A4fin)

Range: p ∈ P \ {T}, γ, γ1, ..., γn ∈ U, x ∈ V of type γ

∀t1, tc2. Term(t1)→ ist(tc2, ∀(x, t1))→ ∀xγ . ist(tc2, Sub(t1, x,Qγ(x))) (A11fin)

Range: γ ∈ U, x ∈ V of type γ

9.5 Typing the temporal axioms

Lastly, we type the axioms of temporal-Qiana (Section 8) with the types introduced in Table 3.

∀f q, tτ . HoldsAt(f q, tτ )← InitiallyP (f
q) ∧ ¬Clipped(0, f q, tτ ) (EC1)

∀f q, tτ3 , aa, tτ1 , tτ2 . HoldsAt(f q, tτ3)

← Happens(aa, tτ1 , t
τ
2) ∧ Initiates(aa, f q, tτ1) ∧ ¬Clipped(tτ1 , f

q, tτ3) ∧ tτ2 < tτ3 (EC2)

∀tτ1 , f q, tτ4 . Clipped(tτ1 , f
q, tτ4)↔ ∃aa, tτ2 , tτ3 . Happens(aa, tτ2 , t

τ
3)∧

(Terminates(aa, f q, tτ2) ∨ Releases(aa, f q, tτ2)) ∧ tτ1 < tτ3 ∧ tτ2 < tτ4 (EC3)

∀f q, tτ . ¬HoldsAt(f q, tτ )← Initially(¬f q) ∧ ¬Declipped(0, f q, tτ ) (EC4)

∀f q, tτ3 , aa, tτ1 , tτ2 . ¬HoldsAt(f q, tτ3)

← Happens(aa, tτ1 , t
τ
2) ∧ Terminates(aa, f q, tτ1) ∧ ¬Declipped(tτ1 , f

q, tτ3) ∧ tτ2 < tτ3 (EC5)

∀tτ1 , f q, tτ4 . Declipped(tτ1 , f
q, tτ4)↔ ∃aa, tτ2 , tτ3 . (EC6)

Happens(aa, tτ2 , t
τ
3) ∧ (Initiates(aa, f q, tτ2) ∨ Releases(aa, f q, tτ2)) ∧ tτ1 < tτ3 ∧ tτ2 < tτ4

∀aa, tτ1 , tτ2 . Happens(aa, tτ1 , t
τ
2)→ tτ1 ≤ tτ2 (EC7)

10. Qiana as a modal logic

We now show that modal logic can be mirrored in Qiana.

10.1 Background on modal logic

For our purposes, the set of modal formulas is defined by adding the arity one “necessity” operator
□ to the inductive definition of propositional formulas. The counterpart “possibility” operator ♢
is then defined by ♢φ ⇔ ¬□¬φ. We recall the usual axioms of formal logics and the definitions
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of the associated systems (K, T , S4, S5, D) (Chellas, 1980; Blackburn, Rijke, & Venema, 2001;
Garson, 2024). These are the axioms:

K : □(p→ q)→ (□p→ □q)

T : □p→ p

4 : □p→ □□p

5 : ♢p→ □♢p

D : □p→ ♢p

There is also a rule called necessitation, which states that if a formula is a tautology of the
system K (see below), then it can be inferred from the axioms:

N :
K |= p

□p

These are the systems:

K = K +N

T = K + T

S4 = T + 4

S5 = T + 5

D = K +D

10.2 Translation into Qiana

We can translate these usual propositional modal logics to Qiana. For the purpose of this section,
we assume an augmented signature with no functions or predicates except for arity 0 predicates –
which we take as our propositional variables – and the various predicates and functions necessary
for the definition of Qiana or introduced in this section.

We introduce a special context □ for modal logic. We introduce the following notations:

□φ⇔ ist(□, φ)

♢φ⇔ ¬ist(□,¬φ)

Thanks to these notations, we can interpret a modal formula as a Qiana formula. To adapt the
axiomsK, T , 4, 5, andD to Qiana, we need to explicitly quantify on quoted formulas and to replace
any logical connective with its quotation. Because □ and ♢ are contexts, we add a level of quotation
per level of nesting.

QK : ∀p, q. □(p→q)→ (□p→ □q)

QT : ∀p. □p→ T(p)
Q4 : ∀p. □p→ □□p

Q5 : ∀p. ♢p→ □♢p

QD : ∀p. □p→ ♢p

29



COUMES, PARIS, SCHWARZENTRUBER, SUCHANEK

To adapt the necessitation rule N to Qiana, we will need to add a new predicate Tauto. Where
Tauto(φ) holds if and only if Qiana |= φ, where Qiana is the set of Qiana axioms on the signature
at hand. Using this predicate, we can write the necessitation rule as follows:

QN : ∀p. Tauto(p)→ □p

To define Tauto we introduce the predicate Wff to represent well-formed formulas:

Wff(p()) (T1)

∀A. Wff(A)→Wff(¬A) (T2)

∀A,B. Wff(A) ∧Wff(B)→Wff(A∧B) (T3)

∀A. Wff(A)→Wff(ist(□,Q(A))) (T4)
Range: p ∈ P with |δ(p)| = 0

We adapt a simple Hilbert-style proof system of propositional logic (Mendelson, 2009) to Qiana.

A→ (B → A)

(A→ (B → C))→ ((A→ B)→ (A→ C))

(¬B → ¬A)→ ((¬B → A)→ B)

This can be done with the following axioms:

∀A,B. Wff(A) ∧Wff(B)→ Tauto(A→(B→A)) (T5)

∀A,B,C. Wff(A) ∧Wff(B) ∧Wff(C)→ Tauto((A→(B→C))→((A→B)→(A→C))) (T6)

∀A,B. Wff(A) ∧Wff(B)→ Tauto((¬B→¬A)→((¬B→A)→B)) (T7)

We also need to apply the modus ponens rule to Tauto:

∀A,B. Tauto(A→B) ∧ Tauto(A)→ Tauto(B) (T8)

Lastly, there is a more complex issue to consider. The necessitation rule N reacts to what is tauto-
logical within the system K and not only what is generally tautological in classic propositional logic.
Hence, we need to include rules to extend Tauto to tautologies of K rather than only tautologies of
classical propositional logic.

∀A. Tauto(A)→ Tauto(ist(□,Q(A))) (T9)

∀A,B. Tauto(ist(□, A→B))→ Tauto(ist(□, A)→ist(□, B)) (T10)

Together, these axioms define the behavior of Tauto.

Definition 13. We define Htauto = T1− T10, the set of axioms that define the behavior of Tauto.

Lemma 1 (Definition of Tauto). If modal formula φ is a tautology under K, thenHtauto |= Tauto(φ).

Proof. Any tautology of K can be proven by a finite number of applications of the axioms of K
and the rules modus ponens and necessitation. These admit counterparts under Htauto, which means
each step of such a proof is a valid inference under Htauto.
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We now define sets of Qiana axioms corresponding to the various systems of modal logic: Let
HQ be the Qiana axioms on the signature at hand. Then, we can define the following systems:

HQK = HQ +Htauto +QK +QN

HQT = HQK +QT

HQ4 = HQT +Q4

HQ5 = HQT +Q5

HQD = HQK +QD

We prove in Proposition 9 that these systems are equivalent to the usual systems of modal logic.

Proposition 9. Let φ be a formula propositional modal formula. Then :

HQK |= φ if and only if K |= φ

HQT |= φ if and only if T |= φ

HQ4 |= φ if and only if S4 |= φ

HQ5 |= φ if and only if S5 |= φ

HQD |= φ if and only if D |= φ

Proof. We describe the proof that HQK |= φ if and only if K |= φ. The other cases are similar.

We first prove that if K ∪ Γ |= ⊥ for some set Γ of modal formulas then HQK ∪ Γ |= ⊥.
If K ∪ Γ |= ⊥, then there is some proof of ⊥ from Γ using only the axiom K, the axioms of

classical propositional logic listed above, and the rules modus ponens and necessitation. Each of
these axioms and rules has a counterpart in the formulas of HQK. The only nontrivial case is the
necessitation rule N which relies on Tauto, the behavior of which was shown in Lemma 1. Hence,
each step of the proof is a valid inference under HQK. Therefore, HQK ∪ Γ |= ⊥.

Now we prove the other direction; if K ∪ Γ ̸|= ⊥ then HQK ∪ Γ ̸|= ⊥. Assume K ∪ Γ ̸|= ⊥. Then
there is a model M of K ∪ Γ. We can adapt M to a model MQ of HQK ∪ Γ. We briefly describe
MQ:

• The truth value of every arity 0 predicate is the same as in M .

• For every formula φ of modal logic, we have MQ |= □φ if and only if M |= □φ. This is
coherent with all axioms of HQK.

• Wff is true on every quotation of modal formula and false otherwise. This is coherent with
the axioms of HQK.

• Tauto is true on every tautology of K and false otherwise. This is coherent with the axioms
of HQK.

The model MQ behaves like M on all modal formulas and is therefore a model of Γ. Because we
can check it is a model of HQK, we have HQK ∪ Γ ̸|= ⊥.

We have shown that HQK |= φ if and only if K |= φ by proving both directions of the equivalence.
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10.3 Example

We illustrate with an example of a simple line of reasoning in the system D of modal logic and its
translation to Qiana. In natural language, we take the following premises:

• “Necessarily, either Juliet faked her death or she killed herself.”

• “Necessarily, if Juliet faked her death, she was unhappy with her family’s decision.”

• “Necessarily, if Juliet killed herself, she was unhappy with her family’s decision.”

We want to prove that it is possible that Juliet was unhappy with her family’s decision.

First, we write this in modal logic:

A : Juliet faked her death

B : Juliet killed herself

C : Juliet was unhappy with her family’s decision

The premises can then be formalized as:

□(A ∨B)

□(A→ C)

□(B → C)

First, we notice the following propositional tautology:

|= (A→ C)→ ((B → C)→ ((A ∨B)→ C))

By necessitation (N ), this gives:

□(A→ C)→ ((B → C)→ ((A ∨B)→ C))

By applying K multiple times along with the modus ponens rule, we derive:

□C

Then, axiom D gives us:
♢C

We now translate this to Qiana. We define arity-0 predicates A, B, and C to represent the propo-
sitions. The necessity operator (□) is treated as a context. The translation of the premises is:

ist(□, A ∨B)

ist(□, A→ C)

ist(□, B → C)
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Which can be written more concisely as:

□(A ∨B)

□A→ C

□B → C

We derive Tauto((A→ C)→ ((B → C)→ ((A ∨B)→ C))) by Lemma 1. Then, by the rule
Modus Ponens and Axiom QN , we obtain:

□(A→ C)→ ((B → C)→ ((A ∨B)→ C))

By repeatedly applying QK and the rule Modus Ponens, we derive:

□C

Finally, using axiom QD and the rule Modus Ponens, we conclude:

♢C

As we can see, the structure of the proof is very similar to that of pure modal logic. The only
steps that do not mirror the ones from the modal logic reasoning are those where we use the Tauto
predicate, but its behavior is guaranteed by Lemma 1.

11. Discussion

11.1 About the definition of the set V of quotable variables

In Section 4 we defined V as a finite subset of V∞, which is in bijection with V . In formulas such
as Axiom A4, we connect x (an element of V ) with x (the corresponding element of V ). This is a
convenient way to present our axioms without a lengthy discussion on fresh variables and the like.
However, in first-order logic, bound variables can be freely renamed with fresh variables. In some
schemes (like Formula A4), we limited the range of some x to V rather than V∞. But all the bound
variables can be replaced with elements of V∞ without issue. The only aspect of V that matters
is that it has the same size as V . The notion of “quotable variable” amounts to a limitation on the
number of distinct variables in a quotable formula, along with giving us a convenient way to state
our axioms.

11.2 Axioms for disambiguation

The axioms on the behavior of contexts introduced in Section 5 are minimal. In particular, we do
not enforce the correct interpretation of terms in a context. For example, the formula ist(c, P (2))
does not imply ist(c, P (1 + 1)); even where 1+1=2 is taken for granted. This nonenforcement of
the correct interpretation of terms in contexts extends to the function Q. The recursive definition of
T includes a mechanism to unwrap Q symbols, but this is not enforced for arbitrary contexts.

In applications where the correct interpretation of terms in contexts is important, the following
axioms can be included to enforce this behavior:
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∀c, t.Wft(t)→ ist(c, t = Q(E(t)))

∀c, t1, t2, t. ist(c, t1 = t2)→ ist(c, t↔sub(t, t1, t2))

where we recall sub is substitution t[t1 ← t2]q = sub(t, t1, t2); and E is the evaluation symbol,
matching a quoted term to its value (the opposite of Q).

12. Conclusion

We have introduced Qiana, a formalism based on first-order logic that allows reasoning on contexts,
quantifying over contexts, and quantifying over formulas. Thanks to our finite axiomatization pro-
cess, Qiana theories can be used with any TPTP compatible theorem prover. We have shown that
Qiana can be used to model beliefs, stories, and paraconsistency.

Furthermore, we have extended Qiana to reason about temporality with event calculus. We have
also presented an alternative many-sorted version of Qiana that includes time. Finally, we have
shown how the usual systems of modal logic can be written within Qiana.

We expect Qiana to be usable for and adaptable to various types of contextual reasoning cases,
including reasoning on hypothetical scenarios, fake news, legal reasoning, and different points of
view. In future work we intend to produce the tools necessary to translate natural language knowl-
edge to Qiana and to develop a Qiana-based system for reasoning on contexts and beliefs. Once this
is done, the ability of Qiana to quantify over both formulas and contexts while remaining compatible
with automated theorem provers will make it a powerful tool for interpretability.
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Appendix A. Proof of truth definition

To prove Property 4 we will instead prove Lemma 2, which is stronger.

Lemma 2. LetA ∈ Lv with no free quoted variables (ie, each x is quantified by a ∀). Let x1, . . . , xn
be the free varialbes of A. Then

A1-4 |= ∀x1, . . . , xn. T(A)↔ µ-1(A)

We prove Lemma 2 by induction on A.
Base case LetM be a model ofA1-4. Let us prove thatM |= ∀x1, . . . , xn.T(p(t1, . . . , tm))↔

µ-1(p(t1, . . . , tm)). For all assignments σ of variables x1, . . . , xn, we have:

M,σ |= T(p(t1, . . . , tm))

iff M,σ |= p(µ-1(t1), . . . , µ-1(tm)) as M |= A1

iff M,σ |= µ-1(p(t1, . . . , tm)) by definition of µ-1

Negation Let M be a model of A1-4. Let us prove that M |= ∀x1, . . . , xn. T(¬A) ↔ µ-1(¬A).
For all assignments σ of variables x1, . . . , xn, we have:

M,σ |= T(¬A)
iff M,σ ̸|= T(A) as M |= A3

iff M,σ ̸|= µ-1(A) by IH

iff M,σ |= µ-1(¬A) by definition of µ-1

∀ LetM be a model ofA1-4. Let us prove thatM |= ∀x1, . . . , xn.T(∀(x,A))↔ µ-1(∀(x,A)).
For all assignments σ of variables x1, . . . , xn, we have:

M,σ |= T(∀(x,A))
iff M,σ |= ∀x. T(A[x← quote(x)]q) as M |= A4

iff M,σ |= ∀x.µ-1(A[x← quote(x)]q) by IH

iff M,σ |= µ-1(∀(x,¬A)) by definition of µ-1

Appendix B. Proof of finite axiomatization

We will now prove Theorem 1. To simplify the proof, we will omit the existence of schema A11
and its finite counterpart schema A11fin. The reason is that they are vastly orthogonal to the other
difficulties of the proof and can be handled in the same way as we deal with the other axioms in this
proof, except they form a more straightforward case. Hence, they would only bloat the proof with
unnecessary tedium largely redundant in spirit with the rest of the reasoning.

Therefore, for the purpose of this proof, we assume:

HC := H ∪Hfin
ist ∪HT

Hfin
C := H ∪Hfin

ist ∪H
fin
T ∪H

fin
tools

We now prove that HC is coherent if and only if Hfin
C is coherent through Proposition 10 and

Proposition 11.
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Proposition 10.
Hfin

C ̸|= ⊥ → HC ̸|= ⊥

Proof. We want to prove that ifHfin
C = H∪Hfin

ist∪H
fin
tools∪H

fin
T has a model, thenHC = H∪Hfin

ist∪HT

also has one. We will now prove Hfin
C |= HT, which is sufficient.

Lemma 3. Let t1, t2 ∈ Qv with free variables x1, . . . , xm, all within quotes. Then for all x,
Hfin

C |= ∀x1, ..., xm. Sub(t1, x, t2) = t1[x← t2]q.

Proof. Proven by direct recursion on t1.

Lemma 4. Let t ∈ Qv with free variables x1, . . . , xm, all within quotes. ThenHfin
C |= ∀x1, . . . , xm. Term(t).

Proof. Proven by direct recursion on T .

Lemma 5. Let t ∈ Tv with free variables x1, . . . , xm, all within quotes. Then

Hfin
C |= ∀x1, . . . , xn. E(t) = µ-1(t)

Proof. Proven by direct recursion on T , as E is by construction built on the same recursion as
µ-1.

Armed with these lemmas, we can prove all schemas of HT with their direct counterpart from
Hfin

T .

We provide a sketch for the more complicated case of schema A1, highlighting the most impor-
tant elements of the proof.
Let t1, . . . , tk ∈ Tv with free variables x1, . . . , xn.
By construction of Wft we have ∀x1, . . . ,∀xn. Wft(ti) for all i. Hence by schema A1fin we have
∀x1, . . . ,∀xn. T (p(t1, . . . , tk))↔ p(E(t1), . . . , E(tk)). Lemma 5 allows us to conclude.

We now prove the other direction of the equivalence.

Proposition 11.
HC ̸|= ⊥ → Hfin

C ̸|= ⊥

Proof. Let M be a model of HC . We will define a model Mf and prove that it is a model of Hfin
C .

We define Mf as follows:

Let D be the domain of M . Recall that T is the set of all terms under S. Without loss of
generality, we assume D ∩ T = ∅. We define Df as the set obtained by adding D and removing
variables to and from the recursive definition of T . We define the M -interpretation of elements of
t ∈ Df as the value in D that we obtain by recursively evaluating T under M .

• Under Mf , the interpretation of any function symbol from S is to recursively build the ele-
ment of Df . Intuitively, we “only” store the terms as we evaluate them without performing
any other operation.
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• Under Mf , the interpretation of any predicate symbol is to turn all arguments in Df to their
M -interpretation and then interpret the predicate as in M .

• = is true equality on Df .

• Wft is true only on elements of Df recursively built with elements of V , F , and quote(y)
for y ∈ D. Remark that Wft is the minimal predicate that satisfies schemas A19 to A21 and
is built with schemas that follow the recursive construction of Tv.

• Term is likewise the minimal predicate to satisfy its definition schemas (schemas A17 to A18).
It is only true on elements recursively built as terms.

• Sub(t2, x, t1) is recursive and localy behaves as t2[x← t1]q if the top symbol of t2 is coherent
with t2 being inQv. Otherwise sub simply returns t2. If the first argument of sub is not in V ,
then sub returns t2. The intuition is that sub is a recursive function defined as “behaves like
t2[x← t1]q if it makes sense to do so (locally). Otherwise, return t2.”.

• E likewise behaves like µ-1 where it locally makes sense to do so and otherwise is identity.
Remark that E(t) = µ-1(t) for t ∈ Tv.

Lemma 6. Let φ be a formula well-defined on S. Then M |= φ iff Mf |= φ

Proof. (Sketch) At each step of term evaluation, the M -interpretation of the result is equal to the
same operation applied to the M interpretations of the arguments. Since every term will have to
be interpreted through a predicate symbol from S, and therefore sent to its M -interpretation before
evaluation, everything happens as though only the M -interpretation of the values was considered.
This is exactly the application of M itself to the formulas. This proves Lemma 6.

We recall that M |= HC , which means M |= H ∪Hfin
ist ∪HT ∪HT. Hence and by Lemma 6,

Mf |= H and Mf |= Hfin
ist . By directly applying the definitions, we see that Mf |= Hfin

tools. Since
Hfin

C = H ∪ Hfin
ist ∪ H

fin
tools ∪ H

fin
T , we now need to prove only that Mf |= Hfin

T . We prove this by
checking that Mf accepts schemas A1fin to A4fin. As they are quite similar to one another, we only
provide explanations for the more complicated case of schema A1fin.

Let p be a predicate symbol of arity n. Further, let v1, . . . , vn ∈ Df such that Mf |= Wft(vi)
for all i. By definition of Wft, there is some selection of variables x1, . . . , xm, a valuation σ :
x1, . . . , xm → Df , and terms t1, . . . , tn ∈ Tv such that: ∀i ∈ [1, n], (Mf , σ)(ti) = vi. By definition
of HT and Lemma 6, we have: Mf |= ∀x1, . . . , xm. T (p(t1, . . . , tn)) ↔ p(µ-1(t1), ..., µ-1(tn)).
Hence Mf , σ |= T (p(t1, . . . , tn)) ↔ p(µ-1(t1), ..., µ-1(tn)). E equals µ-1 on Tv, hence this gives
Mf , σ |= T (p(t1, . . . , tn)) ↔ p(E(t1), ..., E(tn)). Finally, this gives Mf |= T (p(v1, . . . , vn)) ↔
p(E(v1), . . . , E(vn)), which is what we wanted to prove.

Remark that we can handle the case of schema A4fin in a vastly similar fashion, relying on the
similarity of Sub to _[_← _]q instead of to similarity of E to µ-1.
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